Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsnfo Structured version   Visualization version   GIF version

Theorem fsetsnfo 46340
Description: The mapping of an element of a class to a singleton function is a surjection. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
fsetsnf.a 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
fsetsnf.f 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
Assertion
Ref Expression
fsetsnfo (𝑆𝑉𝐹:𝐵onto𝐴)
Distinct variable groups:   𝑥,𝐴   𝐵,𝑏,𝑥,𝑦   𝑆,𝑏,𝑥,𝑦   𝑉,𝑏,𝑥
Allowed substitution hints:   𝐴(𝑦,𝑏)   𝐹(𝑥,𝑦,𝑏)   𝑉(𝑦)

Proof of Theorem fsetsnfo
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsetsnf.a . . 3 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
2 fsetsnf.f . . 3 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
31, 2fsetsnf 46338 . 2 (𝑆𝑉𝐹:𝐵𝐴)
4 vex 3472 . . . . . 6 𝑚 ∈ V
5 eqeq1 2730 . . . . . . 7 (𝑦 = 𝑚 → (𝑦 = {⟨𝑆, 𝑏⟩} ↔ 𝑚 = {⟨𝑆, 𝑏⟩}))
65rexbidv 3172 . . . . . 6 (𝑦 = 𝑚 → (∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩} ↔ ∃𝑏𝐵 𝑚 = {⟨𝑆, 𝑏⟩}))
74, 6, 1elab2 3667 . . . . 5 (𝑚𝐴 ↔ ∃𝑏𝐵 𝑚 = {⟨𝑆, 𝑏⟩})
8 opeq2 4869 . . . . . . . . 9 (𝑏 = 𝑛 → ⟨𝑆, 𝑏⟩ = ⟨𝑆, 𝑛⟩)
98sneqd 4635 . . . . . . . 8 (𝑏 = 𝑛 → {⟨𝑆, 𝑏⟩} = {⟨𝑆, 𝑛⟩})
109eqeq2d 2737 . . . . . . 7 (𝑏 = 𝑛 → (𝑚 = {⟨𝑆, 𝑏⟩} ↔ 𝑚 = {⟨𝑆, 𝑛⟩}))
1110cbvrexvw 3229 . . . . . 6 (∃𝑏𝐵 𝑚 = {⟨𝑆, 𝑏⟩} ↔ ∃𝑛𝐵 𝑚 = {⟨𝑆, 𝑛⟩})
12 simpr 484 . . . . . . . . 9 (((𝑆𝑉𝑛𝐵) ∧ 𝑚 = {⟨𝑆, 𝑛⟩}) → 𝑚 = {⟨𝑆, 𝑛⟩})
132a1i 11 . . . . . . . . . . . 12 ((𝑆𝑉𝑛𝐵) → 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}))
14 opeq2 4869 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ⟨𝑆, 𝑥⟩ = ⟨𝑆, 𝑛⟩)
1514sneqd 4635 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑛⟩})
1615adantl 481 . . . . . . . . . . . 12 (((𝑆𝑉𝑛𝐵) ∧ 𝑥 = 𝑛) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑛⟩})
17 simpr 484 . . . . . . . . . . . 12 ((𝑆𝑉𝑛𝐵) → 𝑛𝐵)
18 snex 5424 . . . . . . . . . . . . 13 {⟨𝑆, 𝑛⟩} ∈ V
1918a1i 11 . . . . . . . . . . . 12 ((𝑆𝑉𝑛𝐵) → {⟨𝑆, 𝑛⟩} ∈ V)
2013, 16, 17, 19fvmptd 6999 . . . . . . . . . . 11 ((𝑆𝑉𝑛𝐵) → (𝐹𝑛) = {⟨𝑆, 𝑛⟩})
2120eqcomd 2732 . . . . . . . . . 10 ((𝑆𝑉𝑛𝐵) → {⟨𝑆, 𝑛⟩} = (𝐹𝑛))
2221adantr 480 . . . . . . . . 9 (((𝑆𝑉𝑛𝐵) ∧ 𝑚 = {⟨𝑆, 𝑛⟩}) → {⟨𝑆, 𝑛⟩} = (𝐹𝑛))
2312, 22eqtrd 2766 . . . . . . . 8 (((𝑆𝑉𝑛𝐵) ∧ 𝑚 = {⟨𝑆, 𝑛⟩}) → 𝑚 = (𝐹𝑛))
2423ex 412 . . . . . . 7 ((𝑆𝑉𝑛𝐵) → (𝑚 = {⟨𝑆, 𝑛⟩} → 𝑚 = (𝐹𝑛)))
2524reximdva 3162 . . . . . 6 (𝑆𝑉 → (∃𝑛𝐵 𝑚 = {⟨𝑆, 𝑛⟩} → ∃𝑛𝐵 𝑚 = (𝐹𝑛)))
2611, 25biimtrid 241 . . . . 5 (𝑆𝑉 → (∃𝑏𝐵 𝑚 = {⟨𝑆, 𝑏⟩} → ∃𝑛𝐵 𝑚 = (𝐹𝑛)))
277, 26biimtrid 241 . . . 4 (𝑆𝑉 → (𝑚𝐴 → ∃𝑛𝐵 𝑚 = (𝐹𝑛)))
2827imp 406 . . 3 ((𝑆𝑉𝑚𝐴) → ∃𝑛𝐵 𝑚 = (𝐹𝑛))
2928ralrimiva 3140 . 2 (𝑆𝑉 → ∀𝑚𝐴𝑛𝐵 𝑚 = (𝐹𝑛))
30 dffo3 7097 . 2 (𝐹:𝐵onto𝐴 ↔ (𝐹:𝐵𝐴 ∧ ∀𝑚𝐴𝑛𝐵 𝑚 = (𝐹𝑛)))
313, 29, 30sylanbrc 582 1 (𝑆𝑉𝐹:𝐵onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {cab 2703  wral 3055  wrex 3064  Vcvv 3468  {csn 4623  cop 4629  cmpt 5224  wf 6533  ontowfo 6535  cfv 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-fo 6543  df-fv 6545
This theorem is referenced by:  fsetsnf1o  46341
  Copyright terms: Public domain W3C validator