Step | Hyp | Ref
| Expression |
1 | | fsetsnf.a |
. . 3
⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} |
2 | | fsetsnf.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) |
3 | 1, 2 | fsetsnf 44545 |
. 2
⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) |
4 | | vex 3436 |
. . . . . 6
⊢ 𝑚 ∈ V |
5 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑦 = 𝑚 → (𝑦 = {〈𝑆, 𝑏〉} ↔ 𝑚 = {〈𝑆, 𝑏〉})) |
6 | 5 | rexbidv 3226 |
. . . . . 6
⊢ (𝑦 = 𝑚 → (∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉} ↔ ∃𝑏 ∈ 𝐵 𝑚 = {〈𝑆, 𝑏〉})) |
7 | 4, 6, 1 | elab2 3613 |
. . . . 5
⊢ (𝑚 ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐵 𝑚 = {〈𝑆, 𝑏〉}) |
8 | | opeq2 4805 |
. . . . . . . . 9
⊢ (𝑏 = 𝑛 → 〈𝑆, 𝑏〉 = 〈𝑆, 𝑛〉) |
9 | 8 | sneqd 4573 |
. . . . . . . 8
⊢ (𝑏 = 𝑛 → {〈𝑆, 𝑏〉} = {〈𝑆, 𝑛〉}) |
10 | 9 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑏 = 𝑛 → (𝑚 = {〈𝑆, 𝑏〉} ↔ 𝑚 = {〈𝑆, 𝑛〉})) |
11 | 10 | cbvrexvw 3384 |
. . . . . 6
⊢
(∃𝑏 ∈
𝐵 𝑚 = {〈𝑆, 𝑏〉} ↔ ∃𝑛 ∈ 𝐵 𝑚 = {〈𝑆, 𝑛〉}) |
12 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑛 ∈ 𝐵) ∧ 𝑚 = {〈𝑆, 𝑛〉}) → 𝑚 = {〈𝑆, 𝑛〉}) |
13 | 2 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑛 ∈ 𝐵) → 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉})) |
14 | | opeq2 4805 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑛 → 〈𝑆, 𝑥〉 = 〈𝑆, 𝑛〉) |
15 | 14 | sneqd 4573 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → {〈𝑆, 𝑥〉} = {〈𝑆, 𝑛〉}) |
16 | 15 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑛 ∈ 𝐵) ∧ 𝑥 = 𝑛) → {〈𝑆, 𝑥〉} = {〈𝑆, 𝑛〉}) |
17 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑛 ∈ 𝐵) → 𝑛 ∈ 𝐵) |
18 | | snex 5354 |
. . . . . . . . . . . . 13
⊢
{〈𝑆, 𝑛〉} ∈
V |
19 | 18 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑛 ∈ 𝐵) → {〈𝑆, 𝑛〉} ∈ V) |
20 | 13, 16, 17, 19 | fvmptd 6882 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑛 ∈ 𝐵) → (𝐹‘𝑛) = {〈𝑆, 𝑛〉}) |
21 | 20 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑛 ∈ 𝐵) → {〈𝑆, 𝑛〉} = (𝐹‘𝑛)) |
22 | 21 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑛 ∈ 𝐵) ∧ 𝑚 = {〈𝑆, 𝑛〉}) → {〈𝑆, 𝑛〉} = (𝐹‘𝑛)) |
23 | 12, 22 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑛 ∈ 𝐵) ∧ 𝑚 = {〈𝑆, 𝑛〉}) → 𝑚 = (𝐹‘𝑛)) |
24 | 23 | ex 413 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑛 ∈ 𝐵) → (𝑚 = {〈𝑆, 𝑛〉} → 𝑚 = (𝐹‘𝑛))) |
25 | 24 | reximdva 3203 |
. . . . . 6
⊢ (𝑆 ∈ 𝑉 → (∃𝑛 ∈ 𝐵 𝑚 = {〈𝑆, 𝑛〉} → ∃𝑛 ∈ 𝐵 𝑚 = (𝐹‘𝑛))) |
26 | 11, 25 | syl5bi 241 |
. . . . 5
⊢ (𝑆 ∈ 𝑉 → (∃𝑏 ∈ 𝐵 𝑚 = {〈𝑆, 𝑏〉} → ∃𝑛 ∈ 𝐵 𝑚 = (𝐹‘𝑛))) |
27 | 7, 26 | syl5bi 241 |
. . . 4
⊢ (𝑆 ∈ 𝑉 → (𝑚 ∈ 𝐴 → ∃𝑛 ∈ 𝐵 𝑚 = (𝐹‘𝑛))) |
28 | 27 | imp 407 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑚 ∈ 𝐴) → ∃𝑛 ∈ 𝐵 𝑚 = (𝐹‘𝑛)) |
29 | 28 | ralrimiva 3103 |
. 2
⊢ (𝑆 ∈ 𝑉 → ∀𝑚 ∈ 𝐴 ∃𝑛 ∈ 𝐵 𝑚 = (𝐹‘𝑛)) |
30 | | dffo3 6978 |
. 2
⊢ (𝐹:𝐵–onto→𝐴 ↔ (𝐹:𝐵⟶𝐴 ∧ ∀𝑚 ∈ 𝐴 ∃𝑛 ∈ 𝐵 𝑚 = (𝐹‘𝑛))) |
31 | 3, 29, 30 | sylanbrc 583 |
1
⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–onto→𝐴) |