MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppunfi Structured version   Visualization version   GIF version

Theorem fsuppunfi 9400
Description: The union of the support of two finitely supported functions is finite. (Contributed by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
fsuppun.f (𝜑𝐹 finSupp 𝑍)
fsuppun.g (𝜑𝐺 finSupp 𝑍)
Assertion
Ref Expression
fsuppunfi (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)

Proof of Theorem fsuppunfi
StepHypRef Expression
1 fsuppun.f . 2 (𝜑𝐹 finSupp 𝑍)
2 fsuppimp 9380 . . 3 (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))
3 fsuppun.g . . . . 5 (𝜑𝐺 finSupp 𝑍)
4 fsuppimp 9380 . . . . 5 (𝐺 finSupp 𝑍 → (Fun 𝐺 ∧ (𝐺 supp 𝑍) ∈ Fin))
5 unfi 9185 . . . . . . 7 (((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ∈ Fin) → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)
65expcom 413 . . . . . 6 ((𝐺 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin))
76adantl 481 . . . . 5 ((Fun 𝐺 ∧ (𝐺 supp 𝑍) ∈ Fin) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin))
83, 4, 73syl 18 . . . 4 (𝜑 → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin))
98com12 32 . . 3 ((𝐹 supp 𝑍) ∈ Fin → (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin))
102, 9simpl2im 503 . 2 (𝐹 finSupp 𝑍 → (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin))
111, 10mpcom 38 1 (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cun 3924   class class class wbr 5119  Fun wfun 6525  (class class class)co 7405   supp csupp 8159  Fincfn 8959   finSupp cfsupp 9373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-en 8960  df-fin 8963  df-fsupp 9374
This theorem is referenced by:  wemapso2lem  9566  dprdfadd  20003  psrbagaddcl  21884  mhpmulcl  22087  naddcnff  43386
  Copyright terms: Public domain W3C validator