| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppunfi | Structured version Visualization version GIF version | ||
| Description: The union of the support of two finitely supported functions is finite. (Contributed by AV, 1-Jul-2019.) |
| Ref | Expression |
|---|---|
| fsuppun.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| fsuppun.g | ⊢ (𝜑 → 𝐺 finSupp 𝑍) |
| Ref | Expression |
|---|---|
| fsuppunfi | ⊢ (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppun.f | . 2 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 2 | fsuppimp 9295 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
| 3 | fsuppun.g | . . . . 5 ⊢ (𝜑 → 𝐺 finSupp 𝑍) | |
| 4 | fsuppimp 9295 | . . . . 5 ⊢ (𝐺 finSupp 𝑍 → (Fun 𝐺 ∧ (𝐺 supp 𝑍) ∈ Fin)) | |
| 5 | unfi 9112 | . . . . . . 7 ⊢ (((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ∈ Fin) → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin) | |
| 6 | 5 | expcom 413 | . . . . . 6 ⊢ ((𝐺 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((Fun 𝐺 ∧ (𝐺 supp 𝑍) ∈ Fin) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 8 | 3, 4, 7 | 3syl 18 | . . . 4 ⊢ (𝜑 → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 9 | 8 | com12 32 | . . 3 ⊢ ((𝐹 supp 𝑍) ∈ Fin → (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 10 | 2, 9 | simpl2im 503 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 11 | 1, 10 | mpcom 38 | 1 ⊢ (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∪ cun 3909 class class class wbr 5102 Fun wfun 6493 (class class class)co 7369 supp csupp 8116 Fincfn 8895 finSupp cfsupp 9288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-en 8896 df-fin 8899 df-fsupp 9289 |
| This theorem is referenced by: wemapso2lem 9481 dprdfadd 19936 psrbagaddcl 21866 mhpmulcl 22069 naddcnff 43344 |
| Copyright terms: Public domain | W3C validator |