| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppunfi | Structured version Visualization version GIF version | ||
| Description: The union of the support of two finitely supported functions is finite. (Contributed by AV, 1-Jul-2019.) |
| Ref | Expression |
|---|---|
| fsuppun.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| fsuppun.g | ⊢ (𝜑 → 𝐺 finSupp 𝑍) |
| Ref | Expression |
|---|---|
| fsuppunfi | ⊢ (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppun.f | . 2 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 2 | fsuppimp 9262 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
| 3 | fsuppun.g | . . . . 5 ⊢ (𝜑 → 𝐺 finSupp 𝑍) | |
| 4 | fsuppimp 9262 | . . . . 5 ⊢ (𝐺 finSupp 𝑍 → (Fun 𝐺 ∧ (𝐺 supp 𝑍) ∈ Fin)) | |
| 5 | unfi 9090 | . . . . . . 7 ⊢ (((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ∈ Fin) → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin) | |
| 6 | 5 | expcom 413 | . . . . . 6 ⊢ ((𝐺 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((Fun 𝐺 ∧ (𝐺 supp 𝑍) ∈ Fin) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 8 | 3, 4, 7 | 3syl 18 | . . . 4 ⊢ (𝜑 → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 9 | 8 | com12 32 | . . 3 ⊢ ((𝐹 supp 𝑍) ∈ Fin → (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 10 | 2, 9 | simpl2im 503 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 11 | 1, 10 | mpcom 38 | 1 ⊢ (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∪ cun 3897 class class class wbr 5095 Fun wfun 6483 (class class class)co 7355 supp csupp 8099 Fincfn 8878 finSupp cfsupp 9255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-en 8879 df-fin 8882 df-fsupp 9256 |
| This theorem is referenced by: wemapso2lem 9448 dprdfadd 19944 psrbagaddcl 21871 mhpmulcl 22074 naddcnff 43469 |
| Copyright terms: Public domain | W3C validator |