MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppunfi Structured version   Visualization version   GIF version

Theorem fsuppunfi 9339
Description: The union of the support of two finitely supported functions is finite. (Contributed by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
fsuppun.f (𝜑𝐹 finSupp 𝑍)
fsuppun.g (𝜑𝐺 finSupp 𝑍)
Assertion
Ref Expression
fsuppunfi (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)

Proof of Theorem fsuppunfi
StepHypRef Expression
1 fsuppun.f . 2 (𝜑𝐹 finSupp 𝑍)
2 fsuppimp 9319 . . 3 (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))
3 fsuppun.g . . . . 5 (𝜑𝐺 finSupp 𝑍)
4 fsuppimp 9319 . . . . 5 (𝐺 finSupp 𝑍 → (Fun 𝐺 ∧ (𝐺 supp 𝑍) ∈ Fin))
5 unfi 9135 . . . . . . 7 (((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ∈ Fin) → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)
65expcom 413 . . . . . 6 ((𝐺 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin))
76adantl 481 . . . . 5 ((Fun 𝐺 ∧ (𝐺 supp 𝑍) ∈ Fin) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin))
83, 4, 73syl 18 . . . 4 (𝜑 → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin))
98com12 32 . . 3 ((𝐹 supp 𝑍) ∈ Fin → (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin))
102, 9simpl2im 503 . 2 (𝐹 finSupp 𝑍 → (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin))
111, 10mpcom 38 1 (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cun 3912   class class class wbr 5107  Fun wfun 6505  (class class class)co 7387   supp csupp 8139  Fincfn 8918   finSupp cfsupp 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-en 8919  df-fin 8922  df-fsupp 9313
This theorem is referenced by:  wemapso2lem  9505  dprdfadd  19952  psrbagaddcl  21833  mhpmulcl  22036  naddcnff  43351
  Copyright terms: Public domain W3C validator