| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppunfi | Structured version Visualization version GIF version | ||
| Description: The union of the support of two finitely supported functions is finite. (Contributed by AV, 1-Jul-2019.) |
| Ref | Expression |
|---|---|
| fsuppun.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| fsuppun.g | ⊢ (𝜑 → 𝐺 finSupp 𝑍) |
| Ref | Expression |
|---|---|
| fsuppunfi | ⊢ (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppun.f | . 2 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 2 | fsuppimp 9247 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
| 3 | fsuppun.g | . . . . 5 ⊢ (𝜑 → 𝐺 finSupp 𝑍) | |
| 4 | fsuppimp 9247 | . . . . 5 ⊢ (𝐺 finSupp 𝑍 → (Fun 𝐺 ∧ (𝐺 supp 𝑍) ∈ Fin)) | |
| 5 | unfi 9075 | . . . . . . 7 ⊢ (((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ∈ Fin) → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin) | |
| 6 | 5 | expcom 413 | . . . . . 6 ⊢ ((𝐺 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((Fun 𝐺 ∧ (𝐺 supp 𝑍) ∈ Fin) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 8 | 3, 4, 7 | 3syl 18 | . . . 4 ⊢ (𝜑 → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 9 | 8 | com12 32 | . . 3 ⊢ ((𝐹 supp 𝑍) ∈ Fin → (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 10 | 2, 9 | simpl2im 503 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)) |
| 11 | 1, 10 | mpcom 38 | 1 ⊢ (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2110 ∪ cun 3898 class class class wbr 5089 Fun wfun 6471 (class class class)co 7341 supp csupp 8085 Fincfn 8864 finSupp cfsupp 9240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-om 7792 df-en 8865 df-fin 8868 df-fsupp 9241 |
| This theorem is referenced by: wemapso2lem 9433 dprdfadd 19927 psrbagaddcl 21854 mhpmulcl 22057 naddcnff 43374 |
| Copyright terms: Public domain | W3C validator |