MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsuppr Structured version   Visualization version   GIF version

Theorem mptnn0fsuppr 13913
Description: A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0 (𝜑0𝑉)
mptnn0fsupp.c ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
mptnn0fsuppr.s (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Assertion
Ref Expression
mptnn0fsuppr (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑠,𝑥   𝜑,𝑘,𝑠,𝑥   0 ,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑠)   𝐶(𝑘)   𝑉(𝑥,𝑘,𝑠)   0 (𝑘)

Proof of Theorem mptnn0fsuppr
StepHypRef Expression
1 mptnn0fsuppr.s . . 3 (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
2 fsuppimp 9318 . . . 4 ((𝑘 ∈ ℕ0𝐶) finSupp 0 → (Fun (𝑘 ∈ ℕ0𝐶) ∧ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3 mptnn0fsupp.c . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
43ralrimiva 3140 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
5 eqid 2733 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
65fnmpt 6645 . . . . . . . . . . . . . 14 (∀𝑘 ∈ ℕ0 𝐶𝐵 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
74, 6syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
8 nn0ex 12427 . . . . . . . . . . . . . 14 0 ∈ V
98a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ0 ∈ V)
10 mptnn0fsupp.0 . . . . . . . . . . . . . 14 (𝜑0𝑉)
1110elexd 3467 . . . . . . . . . . . . 13 (𝜑0 ∈ V)
127, 9, 113jca 1129 . . . . . . . . . . . 12 (𝜑 → ((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V))
1312adantr 482 . . . . . . . . . . 11 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V))
14 suppvalfn 8104 . . . . . . . . . . 11 (((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
1513, 14syl 17 . . . . . . . . . 10 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
16 simpr 486 . . . . . . . . . . . . 13 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
174adantr 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
1817adantr 482 . . . . . . . . . . . . . 14 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
19 rspcsbela 4399 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑥 / 𝑘𝐶𝐵)
2016, 18, 19syl2anc 585 . . . . . . . . . . . . 13 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐶𝐵)
215fvmpts 6955 . . . . . . . . . . . . 13 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2216, 20, 21syl2anc 585 . . . . . . . . . . . 12 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2322neeq1d 3000 . . . . . . . . . . 11 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0𝑥 / 𝑘𝐶0 ))
2423rabbidva 3413 . . . . . . . . . 10 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } = {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 })
2515, 24eqtrd 2773 . . . . . . . . 9 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 })
2625eleq1d 2819 . . . . . . . 8 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin ↔ {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
2726biimpd 228 . . . . . . 7 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
2827expcom 415 . . . . . 6 (Fun (𝑘 ∈ ℕ0𝐶) → (𝜑 → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin)))
2928com23 86 . . . . 5 (Fun (𝑘 ∈ ℕ0𝐶) → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin → (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin)))
3029imp 408 . . . 4 ((Fun (𝑘 ∈ ℕ0𝐶) ∧ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin) → (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
312, 30syl 17 . . 3 ((𝑘 ∈ ℕ0𝐶) finSupp 0 → (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
321, 31mpcom 38 . 2 (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin)
33 rabssnn0fi 13900 . . 3 ({𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ))
34 nne 2944 . . . . . 6 𝑥 / 𝑘𝐶0𝑥 / 𝑘𝐶 = 0 )
3534imbi2i 336 . . . . 5 ((𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ) ↔ (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3635ralbii 3093 . . . 4 (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3736rexbii 3094 . . 3 (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3833, 37bitri 275 . 2 ({𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3932, 38sylib 217 1 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2940  wral 3061  wrex 3070  {crab 3406  Vcvv 3447  csb 3859   class class class wbr 5109  cmpt 5192  Fun wfun 6494   Fn wfn 6495  cfv 6500  (class class class)co 7361   supp csupp 8096  Fincfn 8889   finSupp cfsupp 9311   < clt 11197  0cn0 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-supp 8097  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fsupp 9312  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434
This theorem is referenced by:  cpmidpmatlem3  22244
  Copyright terms: Public domain W3C validator