MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsuppr Structured version   Visualization version   GIF version

Theorem mptnn0fsuppr 13205
Description: A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0 (𝜑0𝑉)
mptnn0fsupp.c ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
mptnn0fsuppr.s (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Assertion
Ref Expression
mptnn0fsuppr (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑠,𝑥   𝜑,𝑘,𝑠,𝑥   0 ,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑠)   𝐶(𝑘)   𝑉(𝑥,𝑘,𝑠)   0 (𝑘)

Proof of Theorem mptnn0fsuppr
StepHypRef Expression
1 mptnn0fsuppr.s . . 3 (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
2 fsuppimp 8675 . . . 4 ((𝑘 ∈ ℕ0𝐶) finSupp 0 → (Fun (𝑘 ∈ ℕ0𝐶) ∧ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3 mptnn0fsupp.c . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
43ralrimiva 3147 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
5 eqid 2793 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
65fnmpt 6348 . . . . . . . . . . . . . 14 (∀𝑘 ∈ ℕ0 𝐶𝐵 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
74, 6syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
8 nn0ex 11740 . . . . . . . . . . . . . 14 0 ∈ V
98a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ0 ∈ V)
10 mptnn0fsupp.0 . . . . . . . . . . . . . 14 (𝜑0𝑉)
1110elexd 3452 . . . . . . . . . . . . 13 (𝜑0 ∈ V)
127, 9, 113jca 1119 . . . . . . . . . . . 12 (𝜑 → ((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V))
1312adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V))
14 suppvalfn 7679 . . . . . . . . . . 11 (((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
1513, 14syl 17 . . . . . . . . . 10 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
16 simpr 485 . . . . . . . . . . . . 13 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
174adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
1817adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
19 rspcsbela 4296 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑥 / 𝑘𝐶𝐵)
2016, 18, 19syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐶𝐵)
215fvmpts 6629 . . . . . . . . . . . . 13 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2216, 20, 21syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2322neeq1d 3041 . . . . . . . . . . 11 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0𝑥 / 𝑘𝐶0 ))
2423rabbidva 3419 . . . . . . . . . 10 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } = {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 })
2515, 24eqtrd 2829 . . . . . . . . 9 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 })
2625eleq1d 2865 . . . . . . . 8 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin ↔ {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
2726biimpd 230 . . . . . . 7 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
2827expcom 414 . . . . . 6 (Fun (𝑘 ∈ ℕ0𝐶) → (𝜑 → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin)))
2928com23 86 . . . . 5 (Fun (𝑘 ∈ ℕ0𝐶) → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin → (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin)))
3029imp 407 . . . 4 ((Fun (𝑘 ∈ ℕ0𝐶) ∧ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin) → (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
312, 30syl 17 . . 3 ((𝑘 ∈ ℕ0𝐶) finSupp 0 → (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
321, 31mpcom 38 . 2 (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin)
33 rabssnn0fi 13192 . . 3 ({𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ))
34 nne 2986 . . . . . 6 𝑥 / 𝑘𝐶0𝑥 / 𝑘𝐶 = 0 )
3534imbi2i 337 . . . . 5 ((𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ) ↔ (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3635ralbii 3130 . . . 4 (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3736rexbii 3209 . . 3 (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3833, 37bitri 276 . 2 ({𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3932, 38sylib 219 1 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1078   = wceq 1520  wcel 2079  wne 2982  wral 3103  wrex 3104  {crab 3107  Vcvv 3432  csb 3806   class class class wbr 4956  cmpt 5035  Fun wfun 6211   Fn wfn 6212  cfv 6217  (class class class)co 7007   supp csupp 7672  Fincfn 8347   finSupp cfsupp 8669   < clt 10510  0cn0 11734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-nn 11476  df-n0 11735  df-z 11819  df-uz 12083  df-fz 12732
This theorem is referenced by:  cpmidpmatlem3  21152
  Copyright terms: Public domain W3C validator