MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsuppr Structured version   Visualization version   GIF version

Theorem mptnn0fsuppr 13555
Description: A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0 (𝜑0𝑉)
mptnn0fsupp.c ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
mptnn0fsuppr.s (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Assertion
Ref Expression
mptnn0fsuppr (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑠,𝑥   𝜑,𝑘,𝑠,𝑥   0 ,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑠)   𝐶(𝑘)   𝑉(𝑥,𝑘,𝑠)   0 (𝑘)

Proof of Theorem mptnn0fsuppr
StepHypRef Expression
1 mptnn0fsuppr.s . . 3 (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
2 fsuppimp 8980 . . . 4 ((𝑘 ∈ ℕ0𝐶) finSupp 0 → (Fun (𝑘 ∈ ℕ0𝐶) ∧ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3 mptnn0fsupp.c . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
43ralrimiva 3098 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
5 eqid 2734 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
65fnmpt 6507 . . . . . . . . . . . . . 14 (∀𝑘 ∈ ℕ0 𝐶𝐵 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
74, 6syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
8 nn0ex 12079 . . . . . . . . . . . . . 14 0 ∈ V
98a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ0 ∈ V)
10 mptnn0fsupp.0 . . . . . . . . . . . . . 14 (𝜑0𝑉)
1110elexd 3421 . . . . . . . . . . . . 13 (𝜑0 ∈ V)
127, 9, 113jca 1130 . . . . . . . . . . . 12 (𝜑 → ((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V))
1312adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V))
14 suppvalfn 7900 . . . . . . . . . . 11 (((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
1513, 14syl 17 . . . . . . . . . 10 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
16 simpr 488 . . . . . . . . . . . . 13 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
174adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
1817adantr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
19 rspcsbela 4340 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑥 / 𝑘𝐶𝐵)
2016, 18, 19syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐶𝐵)
215fvmpts 6810 . . . . . . . . . . . . 13 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2216, 20, 21syl2anc 587 . . . . . . . . . . . 12 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2322neeq1d 2994 . . . . . . . . . . 11 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0𝑥 / 𝑘𝐶0 ))
2423rabbidva 3381 . . . . . . . . . 10 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } = {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 })
2515, 24eqtrd 2774 . . . . . . . . 9 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 })
2625eleq1d 2818 . . . . . . . 8 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin ↔ {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
2726biimpd 232 . . . . . . 7 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
2827expcom 417 . . . . . 6 (Fun (𝑘 ∈ ℕ0𝐶) → (𝜑 → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin)))
2928com23 86 . . . . 5 (Fun (𝑘 ∈ ℕ0𝐶) → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin → (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin)))
3029imp 410 . . . 4 ((Fun (𝑘 ∈ ℕ0𝐶) ∧ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin) → (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
312, 30syl 17 . . 3 ((𝑘 ∈ ℕ0𝐶) finSupp 0 → (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
321, 31mpcom 38 . 2 (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin)
33 rabssnn0fi 13542 . . 3 ({𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ))
34 nne 2939 . . . . . 6 𝑥 / 𝑘𝐶0𝑥 / 𝑘𝐶 = 0 )
3534imbi2i 339 . . . . 5 ((𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ) ↔ (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3635ralbii 3081 . . . 4 (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3736rexbii 3163 . . 3 (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3833, 37bitri 278 . 2 ({𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3932, 38sylib 221 1 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935  wral 3054  wrex 3055  {crab 3058  Vcvv 3401  csb 3802   class class class wbr 5043  cmpt 5124  Fun wfun 6363   Fn wfn 6364  cfv 6369  (class class class)co 7202   supp csupp 7892  Fincfn 8615   finSupp cfsupp 8974   < clt 10850  0cn0 12073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079
This theorem is referenced by:  cpmidpmatlem3  21741
  Copyright terms: Public domain W3C validator