MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsuppr Structured version   Visualization version   GIF version

Theorem mptnn0fsuppr 13366
Description: A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0 (𝜑0𝑉)
mptnn0fsupp.c ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
mptnn0fsuppr.s (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Assertion
Ref Expression
mptnn0fsuppr (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑠,𝑥   𝜑,𝑘,𝑠,𝑥   0 ,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑠)   𝐶(𝑘)   𝑉(𝑥,𝑘,𝑠)   0 (𝑘)

Proof of Theorem mptnn0fsuppr
StepHypRef Expression
1 mptnn0fsuppr.s . . 3 (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
2 fsuppimp 8827 . . . 4 ((𝑘 ∈ ℕ0𝐶) finSupp 0 → (Fun (𝑘 ∈ ℕ0𝐶) ∧ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3 mptnn0fsupp.c . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
43ralrimiva 3152 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
5 eqid 2801 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
65fnmpt 6464 . . . . . . . . . . . . . 14 (∀𝑘 ∈ ℕ0 𝐶𝐵 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
74, 6syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
8 nn0ex 11895 . . . . . . . . . . . . . 14 0 ∈ V
98a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ0 ∈ V)
10 mptnn0fsupp.0 . . . . . . . . . . . . . 14 (𝜑0𝑉)
1110elexd 3464 . . . . . . . . . . . . 13 (𝜑0 ∈ V)
127, 9, 113jca 1125 . . . . . . . . . . . 12 (𝜑 → ((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V))
1312adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V))
14 suppvalfn 7824 . . . . . . . . . . 11 (((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
1513, 14syl 17 . . . . . . . . . 10 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
16 simpr 488 . . . . . . . . . . . . 13 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
174adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
1817adantr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
19 rspcsbela 4346 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑥 / 𝑘𝐶𝐵)
2016, 18, 19syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐶𝐵)
215fvmpts 6752 . . . . . . . . . . . . 13 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2216, 20, 21syl2anc 587 . . . . . . . . . . . 12 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2322neeq1d 3049 . . . . . . . . . . 11 (((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0𝑥 / 𝑘𝐶0 ))
2423rabbidva 3428 . . . . . . . . . 10 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } = {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 })
2515, 24eqtrd 2836 . . . . . . . . 9 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 })
2625eleq1d 2877 . . . . . . . 8 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin ↔ {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
2726biimpd 232 . . . . . . 7 ((𝜑 ∧ Fun (𝑘 ∈ ℕ0𝐶)) → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
2827expcom 417 . . . . . 6 (Fun (𝑘 ∈ ℕ0𝐶) → (𝜑 → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin)))
2928com23 86 . . . . 5 (Fun (𝑘 ∈ ℕ0𝐶) → (((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin → (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin)))
3029imp 410 . . . 4 ((Fun (𝑘 ∈ ℕ0𝐶) ∧ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin) → (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
312, 30syl 17 . . 3 ((𝑘 ∈ ℕ0𝐶) finSupp 0 → (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin))
321, 31mpcom 38 . 2 (𝜑 → {𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin)
33 rabssnn0fi 13353 . . 3 ({𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ))
34 nne 2994 . . . . . 6 𝑥 / 𝑘𝐶0𝑥 / 𝑘𝐶 = 0 )
3534imbi2i 339 . . . . 5 ((𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ) ↔ (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3635ralbii 3136 . . . 4 (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3736rexbii 3213 . . 3 (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝑥 / 𝑘𝐶0 ) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3833, 37bitri 278 . 2 ({𝑥 ∈ ℕ0𝑥 / 𝑘𝐶0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
3932, 38sylib 221 1 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  {crab 3113  Vcvv 3444  csb 3831   class class class wbr 5033  cmpt 5113  Fun wfun 6322   Fn wfn 6323  cfv 6328  (class class class)co 7139   supp csupp 7817  Fincfn 8496   finSupp cfsupp 8821   < clt 10668  0cn0 11889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890
This theorem is referenced by:  cpmidpmatlem3  21480
  Copyright terms: Public domain W3C validator