Proof of Theorem mptnn0fsuppr
Step | Hyp | Ref
| Expression |
1 | | mptnn0fsuppr.s |
. . 3
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
2 | | fsuppimp 9064 |
. . . 4
⊢ ((𝑘 ∈ ℕ0
↦ 𝐶) finSupp 0 → (Fun
(𝑘 ∈
ℕ0 ↦ 𝐶) ∧ ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈
Fin)) |
3 | | mptnn0fsupp.c |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) |
4 | 3 | ralrimiva 3107 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
5 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ0
↦ 𝐶) = (𝑘 ∈ ℕ0
↦ 𝐶) |
6 | 5 | fnmpt 6557 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
ℕ0 𝐶
∈ 𝐵 → (𝑘 ∈ ℕ0
↦ 𝐶) Fn
ℕ0) |
7 | 4, 6 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) Fn
ℕ0) |
8 | | nn0ex 12169 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ∈ V |
9 | 8 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℕ0 ∈
V) |
10 | | mptnn0fsupp.0 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈ 𝑉) |
11 | 10 | elexd 3442 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈ V) |
12 | 7, 9, 11 | 3jca 1126 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0 ∧
ℕ0 ∈ V ∧ 0 ∈
V)) |
13 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ Fun (𝑘 ∈ ℕ0 ↦ 𝐶)) → ((𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0 ∧
ℕ0 ∈ V ∧ 0 ∈
V)) |
14 | | suppvalfn 7956 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ℕ0
↦ 𝐶) Fn
ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0
↦ 𝐶) supp 0 ) = {𝑥 ∈ ℕ0
∣ ((𝑘 ∈
ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 }) |
15 | 13, 14 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ Fun (𝑘 ∈ ℕ0 ↦ 𝐶)) → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0
↦ 𝐶)‘𝑥) ≠ 0 }) |
16 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ Fun (𝑘 ∈ ℕ0 ↦ 𝐶)) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈
ℕ0) |
17 | 4 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ Fun (𝑘 ∈ ℕ0 ↦ 𝐶)) → ∀𝑘 ∈ ℕ0
𝐶 ∈ 𝐵) |
18 | 17 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ Fun (𝑘 ∈ ℕ0 ↦ 𝐶)) ∧ 𝑥 ∈ ℕ0) →
∀𝑘 ∈
ℕ0 𝐶
∈ 𝐵) |
19 | | rspcsbela 4366 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℕ0
∧ ∀𝑘 ∈
ℕ0 𝐶
∈ 𝐵) →
⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) |
20 | 16, 18, 19 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ Fun (𝑘 ∈ ℕ0 ↦ 𝐶)) ∧ 𝑥 ∈ ℕ0) →
⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) |
21 | 5 | fvmpts 6860 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℕ0
∧ ⦋𝑥 /
𝑘⦌𝐶 ∈ 𝐵) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
22 | 16, 20, 21 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ Fun (𝑘 ∈ ℕ0 ↦ 𝐶)) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
23 | 22 | neeq1d 3002 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ Fun (𝑘 ∈ ℕ0 ↦ 𝐶)) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ 𝐶)‘𝑥) ≠ 0 ↔
⦋𝑥 / 𝑘⦌𝐶 ≠ 0 )) |
24 | 23 | rabbidva 3402 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ Fun (𝑘 ∈ ℕ0 ↦ 𝐶)) → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0
↦ 𝐶)‘𝑥) ≠ 0 } = {𝑥 ∈ ℕ0 ∣
⦋𝑥 / 𝑘⦌𝐶 ≠ 0 }) |
25 | 15, 24 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ Fun (𝑘 ∈ ℕ0 ↦ 𝐶)) → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣
⦋𝑥 / 𝑘⦌𝐶 ≠ 0 }) |
26 | 25 | eleq1d 2823 |
. . . . . . . 8
⊢ ((𝜑 ∧ Fun (𝑘 ∈ ℕ0 ↦ 𝐶)) → (((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin ↔ {𝑥 ∈ ℕ0
∣ ⦋𝑥 /
𝑘⦌𝐶 ≠ 0 } ∈
Fin)) |
27 | 26 | biimpd 228 |
. . . . . . 7
⊢ ((𝜑 ∧ Fun (𝑘 ∈ ℕ0 ↦ 𝐶)) → (((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin → {𝑥 ∈ ℕ0
∣ ⦋𝑥 /
𝑘⦌𝐶 ≠ 0 } ∈
Fin)) |
28 | 27 | expcom 413 |
. . . . . 6
⊢ (Fun
(𝑘 ∈
ℕ0 ↦ 𝐶) → (𝜑 → (((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin → {𝑥 ∈ ℕ0
∣ ⦋𝑥 /
𝑘⦌𝐶 ≠ 0 } ∈
Fin))) |
29 | 28 | com23 86 |
. . . . 5
⊢ (Fun
(𝑘 ∈
ℕ0 ↦ 𝐶) → (((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin → (𝜑 → {𝑥 ∈ ℕ0 ∣
⦋𝑥 / 𝑘⦌𝐶 ≠ 0 } ∈
Fin))) |
30 | 29 | imp 406 |
. . . 4
⊢ ((Fun
(𝑘 ∈
ℕ0 ↦ 𝐶) ∧ ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin) →
(𝜑 → {𝑥 ∈ ℕ0 ∣
⦋𝑥 / 𝑘⦌𝐶 ≠ 0 } ∈
Fin)) |
31 | 2, 30 | syl 17 |
. . 3
⊢ ((𝑘 ∈ ℕ0
↦ 𝐶) finSupp 0 → (𝜑 → {𝑥 ∈ ℕ0 ∣
⦋𝑥 / 𝑘⦌𝐶 ≠ 0 } ∈
Fin)) |
32 | 1, 31 | mpcom 38 |
. 2
⊢ (𝜑 → {𝑥 ∈ ℕ0 ∣
⦋𝑥 / 𝑘⦌𝐶 ≠ 0 } ∈
Fin) |
33 | | rabssnn0fi 13634 |
. . 3
⊢ ({𝑥 ∈ ℕ0
∣ ⦋𝑥 /
𝑘⦌𝐶 ≠ 0 } ∈ Fin ↔
∃𝑠 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ⦋𝑥 / 𝑘⦌𝐶 ≠ 0 )) |
34 | | nne 2946 |
. . . . . 6
⊢ (¬
⦋𝑥 / 𝑘⦌𝐶 ≠ 0 ↔
⦋𝑥 / 𝑘⦌𝐶 = 0 ) |
35 | 34 | imbi2i 335 |
. . . . 5
⊢ ((𝑠 < 𝑥 → ¬ ⦋𝑥 / 𝑘⦌𝐶 ≠ 0 ) ↔ (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
36 | 35 | ralbii 3090 |
. . . 4
⊢
(∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → ¬
⦋𝑥 / 𝑘⦌𝐶 ≠ 0 ) ↔ ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
37 | 36 | rexbii 3177 |
. . 3
⊢
(∃𝑠 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ⦋𝑥 / 𝑘⦌𝐶 ≠ 0 ) ↔ ∃𝑠 ∈ ℕ0
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
38 | 33, 37 | bitri 274 |
. 2
⊢ ({𝑥 ∈ ℕ0
∣ ⦋𝑥 /
𝑘⦌𝐶 ≠ 0 } ∈ Fin ↔
∃𝑠 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
39 | 32, 38 | sylib 217 |
1
⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |