MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzf1o Structured version   Visualization version   GIF version

Theorem gsumzf1o 19513
Description: Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 2-Jun-2019.)
Hypotheses
Ref Expression
gsumzcl.b 𝐵 = (Base‘𝐺)
gsumzcl.0 0 = (0g𝐺)
gsumzcl.z 𝑍 = (Cntz‘𝐺)
gsumzcl.g (𝜑𝐺 ∈ Mnd)
gsumzcl.a (𝜑𝐴𝑉)
gsumzcl.f (𝜑𝐹:𝐴𝐵)
gsumzcl.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzcl.w (𝜑𝐹 finSupp 0 )
gsumzf1o.h (𝜑𝐻:𝐶1-1-onto𝐴)
Assertion
Ref Expression
gsumzf1o (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))

Proof of Theorem gsumzf1o
Dummy variables 𝑓 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.g . . . . . . 7 (𝜑𝐺 ∈ Mnd)
2 gsumzcl.a . . . . . . 7 (𝜑𝐴𝑉)
3 gsumzcl.0 . . . . . . . 8 0 = (0g𝐺)
43gsumz 18474 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
51, 2, 4syl2anc 584 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
6 gsumzf1o.h . . . . . . . . 9 (𝜑𝐻:𝐶1-1-onto𝐴)
7 f1of1 6715 . . . . . . . . 9 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶1-1𝐴)
86, 7syl 17 . . . . . . . 8 (𝜑𝐻:𝐶1-1𝐴)
9 f1dmex 7799 . . . . . . . 8 ((𝐻:𝐶1-1𝐴𝐴𝑉) → 𝐶 ∈ V)
108, 2, 9syl2anc 584 . . . . . . 7 (𝜑𝐶 ∈ V)
113gsumz 18474 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐶 ∈ V) → (𝐺 Σg (𝑥𝐶0 )) = 0 )
121, 10, 11syl2anc 584 . . . . . 6 (𝜑 → (𝐺 Σg (𝑥𝐶0 )) = 0 )
135, 12eqtr4d 2781 . . . . 5 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = (𝐺 Σg (𝑥𝐶0 )))
1413adantr 481 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝑘𝐴0 )) = (𝐺 Σg (𝑥𝐶0 )))
15 gsumzcl.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
163fvexi 6788 . . . . . . 7 0 ∈ V
1716a1i 11 . . . . . 6 (𝜑0 ∈ V)
18 ssidd 3944 . . . . . 6 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
1915, 2, 17, 18gsumcllem 19509 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐹 = (𝑘𝐴0 ))
2019oveq2d 7291 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
21 f1of 6716 . . . . . . . . 9 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶𝐴)
226, 21syl 17 . . . . . . . 8 (𝜑𝐻:𝐶𝐴)
2322adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐻:𝐶𝐴)
2423ffvelrnda 6961 . . . . . 6 (((𝜑 ∧ (𝐹 supp 0 ) = ∅) ∧ 𝑥𝐶) → (𝐻𝑥) ∈ 𝐴)
2523feqmptd 6837 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐻 = (𝑥𝐶 ↦ (𝐻𝑥)))
26 eqidd 2739 . . . . . 6 (𝑘 = (𝐻𝑥) → 0 = 0 )
2724, 25, 19, 26fmptco 7001 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹𝐻) = (𝑥𝐶0 ))
2827oveq2d 7291 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝐹𝐻)) = (𝐺 Σg (𝑥𝐶0 )))
2914, 20, 283eqtr4d 2788 . . 3 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))
3029ex 413 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻))))
316adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐻:𝐶1-1-onto𝐴)
32 f1ococnv2 6743 . . . . . . . . . . . . . 14 (𝐻:𝐶1-1-onto𝐴 → (𝐻𝐻) = ( I ↾ 𝐴))
3331, 32syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐻𝐻) = ( I ↾ 𝐴))
3433coeq1d 5770 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐻𝐻) ∘ 𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
35 f1of1 6715 . . . . . . . . . . . . . . 15 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
3635ad2antll 726 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
37 suppssdm 7993 . . . . . . . . . . . . . . . 16 (𝐹 supp 0 ) ⊆ dom 𝐹
3837, 15fssdm 6620 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
3938adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝐴)
40 f1ss 6676 . . . . . . . . . . . . . 14 ((𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ 𝐴) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1𝐴)
4136, 39, 40syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1𝐴)
42 f1f 6670 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1𝐴𝑓:(1...(♯‘(𝐹 supp 0 )))⟶𝐴)
43 fcoi2 6649 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘(𝐹 supp 0 )))⟶𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
4441, 42, 433syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
4534, 44eqtrd 2778 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐻𝐻) ∘ 𝑓) = 𝑓)
46 coass 6169 . . . . . . . . . . 11 ((𝐻𝐻) ∘ 𝑓) = (𝐻 ∘ (𝐻𝑓))
4745, 46eqtr3di 2793 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓 = (𝐻 ∘ (𝐻𝑓)))
4847coeq2d 5771 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹𝑓) = (𝐹 ∘ (𝐻 ∘ (𝐻𝑓))))
49 coass 6169 . . . . . . . . 9 ((𝐹𝐻) ∘ (𝐻𝑓)) = (𝐹 ∘ (𝐻 ∘ (𝐻𝑓)))
5048, 49eqtr4di 2796 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹𝑓) = ((𝐹𝐻) ∘ (𝐻𝑓)))
5150seqeq3d 13729 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → seq1((+g𝐺), (𝐹𝑓)) = seq1((+g𝐺), ((𝐹𝐻) ∘ (𝐻𝑓))))
5251fveq1d 6776 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 supp 0 ))) = (seq1((+g𝐺), ((𝐹𝐻) ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))
53 gsumzcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
54 eqid 2738 . . . . . . 7 (+g𝐺) = (+g𝐺)
55 gsumzcl.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
561adantr 481 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐺 ∈ Mnd)
572adantr 481 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐴𝑉)
5815adantr 481 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐹:𝐴𝐵)
59 gsumzcl.c . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
6059adantr 481 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
61 simprl 768 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (♯‘(𝐹 supp 0 )) ∈ ℕ)
62 ssid 3943 . . . . . . . 8 (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )
63 f1ofo 6723 . . . . . . . . . 10 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ))
64 forn 6691 . . . . . . . . . 10 (𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
6563, 64syl 17 . . . . . . . . 9 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
6665ad2antll 726 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓 = (𝐹 supp 0 ))
6762, 66sseqtrrid 3974 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
68 eqid 2738 . . . . . . 7 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
6953, 3, 54, 55, 56, 57, 58, 60, 61, 41, 67, 68gsumval3 19508 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 supp 0 ))))
7010adantr 481 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐶 ∈ V)
71 fco 6624 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐻:𝐶𝐴) → (𝐹𝐻):𝐶𝐵)
7215, 22, 71syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹𝐻):𝐶𝐵)
7372adantr 481 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹𝐻):𝐶𝐵)
74 rncoss 5881 . . . . . . . . 9 ran (𝐹𝐻) ⊆ ran 𝐹
7555cntzidss 18944 . . . . . . . . 9 ((ran 𝐹 ⊆ (𝑍‘ran 𝐹) ∧ ran (𝐹𝐻) ⊆ ran 𝐹) → ran (𝐹𝐻) ⊆ (𝑍‘ran (𝐹𝐻)))
7659, 74, 75sylancl 586 . . . . . . . 8 (𝜑 → ran (𝐹𝐻) ⊆ (𝑍‘ran (𝐹𝐻)))
7776adantr 481 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran (𝐹𝐻) ⊆ (𝑍‘ran (𝐹𝐻)))
78 f1ocnv 6728 . . . . . . . . . 10 (𝐻:𝐶1-1-onto𝐴𝐻:𝐴1-1-onto𝐶)
79 f1of1 6715 . . . . . . . . . 10 (𝐻:𝐴1-1-onto𝐶𝐻:𝐴1-1𝐶)
806, 78, 793syl 18 . . . . . . . . 9 (𝜑𝐻:𝐴1-1𝐶)
8180adantr 481 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐻:𝐴1-1𝐶)
82 f1co 6682 . . . . . . . 8 ((𝐻:𝐴1-1𝐶𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1𝐴) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1𝐶)
8381, 41, 82syl2anc 584 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐻𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1𝐶)
84 ssidd 3944 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
8515, 2fexd 7103 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
86 suppimacnv 7990 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
8785, 16, 86sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
8887eqcomd 2744 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 supp 0 ))
8988adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 “ (V ∖ { 0 })) = (𝐹 supp 0 ))
9084, 89, 663sstr4d 3968 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 “ (V ∖ { 0 })) ⊆ ran 𝑓)
91 imass2 6010 . . . . . . . . . 10 ((𝐹 “ (V ∖ { 0 })) ⊆ ran 𝑓 → (𝐻 “ (𝐹 “ (V ∖ { 0 }))) ⊆ (𝐻 “ ran 𝑓))
9290, 91syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐻 “ (𝐹 “ (V ∖ { 0 }))) ⊆ (𝐻 “ ran 𝑓))
93 cnvco 5794 . . . . . . . . . . 11 (𝐹𝐻) = (𝐻𝐹)
9493imaeq1i 5966 . . . . . . . . . 10 ((𝐹𝐻) “ (V ∖ { 0 })) = ((𝐻𝐹) “ (V ∖ { 0 }))
95 imaco 6155 . . . . . . . . . 10 ((𝐻𝐹) “ (V ∖ { 0 })) = (𝐻 “ (𝐹 “ (V ∖ { 0 })))
9694, 95eqtri 2766 . . . . . . . . 9 ((𝐹𝐻) “ (V ∖ { 0 })) = (𝐻 “ (𝐹 “ (V ∖ { 0 })))
97 rnco2 6157 . . . . . . . . 9 ran (𝐻𝑓) = (𝐻 “ ran 𝑓)
9892, 96, 973sstr4g 3966 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹𝐻) “ (V ∖ { 0 })) ⊆ ran (𝐻𝑓))
99 f1oexrnex 7774 . . . . . . . . . . . . 13 ((𝐻:𝐶1-1-onto𝐴𝐴𝑉) → 𝐻 ∈ V)
1006, 2, 99syl2anc 584 . . . . . . . . . . . 12 (𝜑𝐻 ∈ V)
101 coexg 7776 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → (𝐹𝐻) ∈ V)
10285, 100, 101syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐹𝐻) ∈ V)
103 suppimacnv 7990 . . . . . . . . . . 11 (((𝐹𝐻) ∈ V ∧ 0 ∈ V) → ((𝐹𝐻) supp 0 ) = ((𝐹𝐻) “ (V ∖ { 0 })))
104102, 16, 103sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝐹𝐻) supp 0 ) = ((𝐹𝐻) “ (V ∖ { 0 })))
105104sseq1d 3952 . . . . . . . . 9 (𝜑 → (((𝐹𝐻) supp 0 ) ⊆ ran (𝐻𝑓) ↔ ((𝐹𝐻) “ (V ∖ { 0 })) ⊆ ran (𝐻𝑓)))
106105adantr 481 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (((𝐹𝐻) supp 0 ) ⊆ ran (𝐻𝑓) ↔ ((𝐹𝐻) “ (V ∖ { 0 })) ⊆ ran (𝐻𝑓)))
10798, 106mpbird 256 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹𝐻) supp 0 ) ⊆ ran (𝐻𝑓))
108 eqid 2738 . . . . . . 7 (((𝐹𝐻) ∘ (𝐻𝑓)) supp 0 ) = (((𝐹𝐻) ∘ (𝐻𝑓)) supp 0 )
10953, 3, 54, 55, 56, 70, 73, 77, 61, 83, 107, 108gsumval3 19508 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg (𝐹𝐻)) = (seq1((+g𝐺), ((𝐹𝐻) ∘ (𝐻𝑓)))‘(♯‘(𝐹 supp 0 ))))
11052, 69, 1093eqtr4d 2788 . . . . 5 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))
111110expr 457 . . . 4 ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) → (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻))))
112111exlimdv 1936 . . 3 ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻))))
113112expimpd 454 . 2 (𝜑 → (((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻))))
114 gsumzcl.w . . 3 (𝜑𝐹 finSupp 0 )
115 fsuppimp 9134 . . . 4 (𝐹 finSupp 0 → (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))
116115simprd 496 . . 3 (𝐹 finSupp 0 → (𝐹 supp 0 ) ∈ Fin)
117 fz1f1o 15422 . . 3 ((𝐹 supp 0 ) ∈ Fin → ((𝐹 supp 0 ) = ∅ ∨ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
118114, 116, 1173syl 18 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ ∨ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
11930, 113, 118mpjaod 857 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cdif 3884  wss 3887  c0 4256  {csn 4561   class class class wbr 5074  cmpt 5157   I cid 5488  ccnv 5588  ran crn 5590  cres 5591  cima 5592  ccom 5593  Fun wfun 6427  wf 6429  1-1wf1 6430  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275   supp csupp 7977  Fincfn 8733   finSupp cfsupp 9128  1c1 10872  cn 11973  ...cfz 13239  seqcseq 13721  chash 14044  Basecbs 16912  +gcplusg 16962  0gc0g 17150   Σg cgsu 17151  Mndcmnd 18385  Cntzccntz 18921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-cntz 18923
This theorem is referenced by:  gsumf1o  19517  smadiadetlem3  21817
  Copyright terms: Public domain W3C validator