| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funiunfvf | Structured version Visualization version GIF version | ||
| Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfv 7250 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) (Revised by David Abernethy, 15-Apr-2013.) |
| Ref | Expression |
|---|---|
| funiunfvf.1 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| funiunfvf | ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funiunfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 2 | nfcv 2897 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
| 3 | 1, 2 | nffv 6896 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 4 | nfcv 2897 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
| 5 | fveq2 6886 | . . 3 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 6 | 3, 4, 5 | cbviun 5016 | . 2 ⊢ ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) |
| 7 | funiunfv 7250 | . 2 ⊢ (Fun 𝐹 → ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ (𝐹 “ 𝐴)) | |
| 8 | 6, 7 | eqtr3id 2783 | 1 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 Ⅎwnfc 2882 ∪ cuni 4887 ∪ ciun 4971 “ cima 5668 Fun wfun 6535 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-fv 6549 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |