MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funiunfvf Structured version   Visualization version   GIF version

Theorem funiunfvf 7276
Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfv 7275 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) (Revised by David Abernethy, 15-Apr-2013.)
Hypothesis
Ref Expression
funiunfvf.1 𝑥𝐹
Assertion
Ref Expression
funiunfvf (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem funiunfvf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 funiunfvf.1 . . . 4 𝑥𝐹
2 nfcv 2905 . . . 4 𝑥𝑧
31, 2nffv 6924 . . 3 𝑥(𝐹𝑧)
4 nfcv 2905 . . 3 𝑧(𝐹𝑥)
5 fveq2 6914 . . 3 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
63, 4, 5cbviun 5044 . 2 𝑧𝐴 (𝐹𝑧) = 𝑥𝐴 (𝐹𝑥)
7 funiunfv 7275 . 2 (Fun 𝐹 𝑧𝐴 (𝐹𝑧) = (𝐹𝐴))
86, 7eqtr3id 2791 1 (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wnfc 2890   cuni 4915   ciun 4999  cima 5696  Fun wfun 6563  cfv 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-fv 6577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator