Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funiunfvf | Structured version Visualization version GIF version |
Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfv 7103 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) (Revised by David Abernethy, 15-Apr-2013.) |
Ref | Expression |
---|---|
funiunfvf.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
funiunfvf | ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funiunfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
2 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
3 | 1, 2 | nffv 6766 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
4 | nfcv 2906 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
5 | fveq2 6756 | . . 3 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
6 | 3, 4, 5 | cbviun 4962 | . 2 ⊢ ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) |
7 | funiunfv 7103 | . 2 ⊢ (Fun 𝐹 → ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ (𝐹 “ 𝐴)) | |
8 | 6, 7 | eqtr3id 2793 | 1 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Ⅎwnfc 2886 ∪ cuni 4836 ∪ ciun 4921 “ cima 5583 Fun wfun 6412 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |