![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funiunfvf | Structured version Visualization version GIF version |
Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfv 7243 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) (Revised by David Abernethy, 15-Apr-2013.) |
Ref | Expression |
---|---|
funiunfvf.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
funiunfvf | ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funiunfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
2 | nfcv 2897 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
3 | 1, 2 | nffv 6895 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
4 | nfcv 2897 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
5 | fveq2 6885 | . . 3 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
6 | 3, 4, 5 | cbviun 5032 | . 2 ⊢ ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) |
7 | funiunfv 7243 | . 2 ⊢ (Fun 𝐹 → ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ (𝐹 “ 𝐴)) | |
8 | 6, 7 | eqtr3id 2780 | 1 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 Ⅎwnfc 2877 ∪ cuni 4902 ∪ ciun 4990 “ cima 5672 Fun wfun 6531 ‘cfv 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-fv 6545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |