| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funiunfvf | Structured version Visualization version GIF version | ||
| Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfv 7225 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) (Revised by David Abernethy, 15-Apr-2013.) |
| Ref | Expression |
|---|---|
| funiunfvf.1 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| funiunfvf | ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funiunfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 2 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
| 3 | 1, 2 | nffv 6871 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 4 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
| 5 | fveq2 6861 | . . 3 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 6 | 3, 4, 5 | cbviun 5003 | . 2 ⊢ ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) |
| 7 | funiunfv 7225 | . 2 ⊢ (Fun 𝐹 → ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ (𝐹 “ 𝐴)) | |
| 8 | 6, 7 | eqtr3id 2779 | 1 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2877 ∪ cuni 4874 ∪ ciun 4958 “ cima 5644 Fun wfun 6508 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |