| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funiunfvf | Structured version Visualization version GIF version | ||
| Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfv 7222 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) (Revised by David Abernethy, 15-Apr-2013.) |
| Ref | Expression |
|---|---|
| funiunfvf.1 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| funiunfvf | ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funiunfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
| 3 | 1, 2 | nffv 6868 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 4 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
| 5 | fveq2 6858 | . . 3 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 6 | 3, 4, 5 | cbviun 5000 | . 2 ⊢ ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) |
| 7 | funiunfv 7222 | . 2 ⊢ (Fun 𝐹 → ∪ 𝑧 ∈ 𝐴 (𝐹‘𝑧) = ∪ (𝐹 “ 𝐴)) | |
| 8 | 6, 7 | eqtr3id 2778 | 1 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2876 ∪ cuni 4871 ∪ ciun 4955 “ cima 5641 Fun wfun 6505 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |