MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funiunfvf Structured version   Visualization version   GIF version

Theorem funiunfvf 7205
Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfv 7204 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) (Revised by David Abernethy, 15-Apr-2013.)
Hypothesis
Ref Expression
funiunfvf.1 𝑥𝐹
Assertion
Ref Expression
funiunfvf (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem funiunfvf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 funiunfvf.1 . . . 4 𝑥𝐹
2 nfcv 2891 . . . 4 𝑥𝑧
31, 2nffv 6850 . . 3 𝑥(𝐹𝑧)
4 nfcv 2891 . . 3 𝑧(𝐹𝑥)
5 fveq2 6840 . . 3 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
63, 4, 5cbviun 4995 . 2 𝑧𝐴 (𝐹𝑧) = 𝑥𝐴 (𝐹𝑥)
7 funiunfv 7204 . 2 (Fun 𝐹 𝑧𝐴 (𝐹𝑧) = (𝐹𝐴))
86, 7eqtr3id 2778 1 (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnfc 2876   cuni 4867   ciun 4951  cima 5634  Fun wfun 6493  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator