| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluniima | Structured version Visualization version GIF version | ||
| Description: Membership in the union of an image of a function. (Contributed by NM, 28-Sep-2006.) |
| Ref | Expression |
|---|---|
| eluniima | ⊢ (Fun 𝐹 → (𝐵 ∈ ∪ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funiunfv 7191 | . . 3 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) | |
| 2 | 1 | eleq2d 2819 | . 2 ⊢ (Fun 𝐹 → (𝐵 ∈ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ↔ 𝐵 ∈ ∪ (𝐹 “ 𝐴))) |
| 3 | eliun 4947 | . 2 ⊢ (𝐵 ∈ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (𝐹‘𝑥)) | |
| 4 | 2, 3 | bitr3di 286 | 1 ⊢ (Fun 𝐹 → (𝐵 ∈ ∪ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 ∃wrex 3058 ∪ cuni 4860 ∪ ciun 4943 “ cima 5624 Fun wfun 6483 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-fv 6497 |
| This theorem is referenced by: elunirnALT 7195 ttrclse 9627 alephfp 10009 acsficl2d 18468 isconstr 33760 r1filimi 35125 r1filim 35126 r1omfi 35127 r1omhf 35128 elhf 36229 |
| Copyright terms: Public domain | W3C validator |