MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluniima Structured version   Visualization version   GIF version

Theorem eluniima 7105
Description: Membership in the union of an image of a function. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
eluniima (Fun 𝐹 → (𝐵 (𝐹𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem eluniima
StepHypRef Expression
1 funiunfv 7103 . . 3 (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
21eleq2d 2824 . 2 (Fun 𝐹 → (𝐵 𝑥𝐴 (𝐹𝑥) ↔ 𝐵 (𝐹𝐴)))
3 eliun 4925 . 2 (𝐵 𝑥𝐴 (𝐹𝑥) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥))
42, 3bitr3di 285 1 (Fun 𝐹 → (𝐵 (𝐹𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  wrex 3064   cuni 4836   ciun 4921  cima 5583  Fun wfun 6412  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  elunirnALT  7107  alephfp  9795  acsficl2d  18185  ttrclse  33713  elhf  34403
  Copyright terms: Public domain W3C validator