MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluniima Structured version   Visualization version   GIF version

Theorem eluniima 7287
Description: Membership in the union of an image of a function. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
eluniima (Fun 𝐹 → (𝐵 (𝐹𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem eluniima
StepHypRef Expression
1 funiunfv 7285 . . 3 (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
21eleq2d 2830 . 2 (Fun 𝐹 → (𝐵 𝑥𝐴 (𝐹𝑥) ↔ 𝐵 (𝐹𝐴)))
3 eliun 5019 . 2 (𝐵 𝑥𝐴 (𝐹𝑥) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥))
42, 3bitr3di 286 1 (Fun 𝐹 → (𝐵 (𝐹𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  wrex 3076   cuni 4931   ciun 5015  cima 5703  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  elunirnALT  7289  ttrclse  9796  alephfp  10177  acsficl2d  18622  elhf  36138
  Copyright terms: Public domain W3C validator