Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluniima | Structured version Visualization version GIF version |
Description: Membership in the union of an image of a function. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
eluniima | ⊢ (Fun 𝐹 → (𝐵 ∈ ∪ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funiunfv 7018 | . . 3 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) | |
2 | 1 | eleq2d 2818 | . 2 ⊢ (Fun 𝐹 → (𝐵 ∈ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ↔ 𝐵 ∈ ∪ (𝐹 “ 𝐴))) |
3 | eliun 4885 | . 2 ⊢ (𝐵 ∈ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (𝐹‘𝑥)) | |
4 | 2, 3 | bitr3di 289 | 1 ⊢ (Fun 𝐹 → (𝐵 ∈ ∪ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2114 ∃wrex 3054 ∪ cuni 4796 ∪ ciun 4881 “ cima 5528 Fun wfun 6333 ‘cfv 6339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-fv 6347 |
This theorem is referenced by: elunirnALT 7022 alephfp 9608 acsficl2d 17902 elhf 34114 |
Copyright terms: Public domain | W3C validator |