MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluniima Structured version   Visualization version   GIF version

Theorem eluniima 7266
Description: Membership in the union of an image of a function. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
eluniima (Fun 𝐹 → (𝐵 (𝐹𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem eluniima
StepHypRef Expression
1 funiunfv 7264 . . 3 (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
21eleq2d 2815 . 2 (Fun 𝐹 → (𝐵 𝑥𝐴 (𝐹𝑥) ↔ 𝐵 (𝐹𝐴)))
3 eliun 5004 . 2 (𝐵 𝑥𝐴 (𝐹𝑥) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥))
42, 3bitr3di 285 1 (Fun 𝐹 → (𝐵 (𝐹𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098  wrex 3067   cuni 4912   ciun 5000  cima 5685  Fun wfun 6547  cfv 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-fv 6561
This theorem is referenced by:  elunirnALT  7268  ttrclse  9758  alephfp  10139  acsficl2d  18551  elhf  35803
  Copyright terms: Public domain W3C validator