MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluniima Structured version   Visualization version   GIF version

Theorem eluniima 7193
Description: Membership in the union of an image of a function. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
eluniima (Fun 𝐹 → (𝐵 (𝐹𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem eluniima
StepHypRef Expression
1 funiunfv 7191 . . 3 (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
21eleq2d 2819 . 2 (Fun 𝐹 → (𝐵 𝑥𝐴 (𝐹𝑥) ↔ 𝐵 (𝐹𝐴)))
3 eliun 4947 . 2 (𝐵 𝑥𝐴 (𝐹𝑥) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥))
42, 3bitr3di 286 1 (Fun 𝐹 → (𝐵 (𝐹𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2113  wrex 3058   cuni 4860   ciun 4943  cima 5624  Fun wfun 6483  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497
This theorem is referenced by:  elunirnALT  7195  ttrclse  9627  alephfp  10009  acsficl2d  18468  isconstr  33760  r1filimi  35125  r1filim  35126  r1omfi  35127  r1omhf  35128  elhf  36229
  Copyright terms: Public domain W3C validator