Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvconstdomi Structured version   Visualization version   GIF version

Theorem fvconstdomi 47990
Description: A constant function's value is dominated by the constant. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.)
Hypothesis
Ref Expression
fvconstdomi.1 𝐵 ∈ V
Assertion
Ref Expression
fvconstdomi ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵

Proof of Theorem fvconstdomi
StepHypRef Expression
1 dmxpss 6180 . . . . 5 dom (𝐴 × {𝐵}) ⊆ 𝐴
21sseli 3978 . . . 4 (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑋𝐴)
3 fvconstdomi.1 . . . . 5 𝐵 ∈ V
43fvconst2 7222 . . . 4 (𝑋𝐴 → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
52, 4syl 17 . . 3 (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
6 domrefg 9014 . . . 4 (𝐵 ∈ V → 𝐵𝐵)
73, 6ax-mp 5 . . 3 𝐵𝐵
85, 7eqbrtrdi 5191 . 2 (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵)
9 ndmfv 6937 . . 3 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = ∅)
1030dom 9137 . . 3 ∅ ≼ 𝐵
119, 10eqbrtrdi 5191 . 2 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵)
128, 11pm2.61i 182 1 ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098  Vcvv 3473  c0 4326  {csn 4632   class class class wbr 5152   × cxp 5680  dom cdm 5682  cfv 6553  cdom 8968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-en 8971  df-dom 8972
This theorem is referenced by:  f1omoALT  47992
  Copyright terms: Public domain W3C validator