Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvconstdomi Structured version   Visualization version   GIF version

Theorem fvconstdomi 48923
Description: A constant function's value is dominated by the constant. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.)
Hypothesis
Ref Expression
fvconstdomi.1 𝐵 ∈ V
Assertion
Ref Expression
fvconstdomi ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵

Proof of Theorem fvconstdomi
StepHypRef Expression
1 dmxpss 6113 . . . . 5 dom (𝐴 × {𝐵}) ⊆ 𝐴
21sseli 3925 . . . 4 (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑋𝐴)
3 fvconstdomi.1 . . . . 5 𝐵 ∈ V
43fvconst2 7133 . . . 4 (𝑋𝐴 → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
52, 4syl 17 . . 3 (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
6 domrefg 8904 . . . 4 (𝐵 ∈ V → 𝐵𝐵)
73, 6ax-mp 5 . . 3 𝐵𝐵
85, 7eqbrtrdi 5125 . 2 (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵)
9 ndmfv 6849 . . 3 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = ∅)
1030dom 9015 . . 3 ∅ ≼ 𝐵
119, 10eqbrtrdi 5125 . 2 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵)
128, 11pm2.61i 182 1 ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  c0 4278  {csn 4571   class class class wbr 5086   × cxp 5609  dom cdm 5611  cfv 6476  cdom 8862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-en 8865  df-dom 8866
This theorem is referenced by:  f1omoALT  48926
  Copyright terms: Public domain W3C validator