Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvconstdomi Structured version   Visualization version   GIF version

Theorem fvconstdomi 48573
Description: A constant function's value is dominated by the constant. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.)
Hypothesis
Ref Expression
fvconstdomi.1 𝐵 ∈ V
Assertion
Ref Expression
fvconstdomi ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵

Proof of Theorem fvconstdomi
StepHypRef Expression
1 dmxpss 6202 . . . . 5 dom (𝐴 × {𝐵}) ⊆ 𝐴
21sseli 4004 . . . 4 (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑋𝐴)
3 fvconstdomi.1 . . . . 5 𝐵 ∈ V
43fvconst2 7241 . . . 4 (𝑋𝐴 → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
52, 4syl 17 . . 3 (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
6 domrefg 9047 . . . 4 (𝐵 ∈ V → 𝐵𝐵)
73, 6ax-mp 5 . . 3 𝐵𝐵
85, 7eqbrtrdi 5205 . 2 (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵)
9 ndmfv 6955 . . 3 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = ∅)
1030dom 9172 . . 3 ∅ ≼ 𝐵
119, 10eqbrtrdi 5205 . 2 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵)
128, 11pm2.61i 182 1 ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  {csn 4648   class class class wbr 5166   × cxp 5698  dom cdm 5700  cfv 6573  cdom 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-en 9004  df-dom 9005
This theorem is referenced by:  f1omoALT  48575
  Copyright terms: Public domain W3C validator