| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvconstdomi | Structured version Visualization version GIF version | ||
| Description: A constant function's value is dominated by the constant. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| fvconstdomi.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvconstdomi | ⊢ ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmxpss 6124 | . . . . 5 ⊢ dom (𝐴 × {𝐵}) ⊆ 𝐴 | |
| 2 | 1 | sseli 3933 | . . . 4 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑋 ∈ 𝐴) |
| 3 | fvconstdomi.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 4 | 3 | fvconst2 7144 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
| 5 | 2, 4 | syl 17 | . . 3 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
| 6 | domrefg 8919 | . . . 4 ⊢ (𝐵 ∈ V → 𝐵 ≼ 𝐵) | |
| 7 | 3, 6 | ax-mp 5 | . . 3 ⊢ 𝐵 ≼ 𝐵 |
| 8 | 5, 7 | eqbrtrdi 5134 | . 2 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵) |
| 9 | ndmfv 6859 | . . 3 ⊢ (¬ 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = ∅) | |
| 10 | 3 | 0dom 9031 | . . 3 ⊢ ∅ ≼ 𝐵 |
| 11 | 9, 10 | eqbrtrdi 5134 | . 2 ⊢ (¬ 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵) |
| 12 | 8, 11 | pm2.61i 182 | 1 ⊢ ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 {csn 4579 class class class wbr 5095 × cxp 5621 dom cdm 5623 ‘cfv 6486 ≼ cdom 8877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-en 8880 df-dom 8881 |
| This theorem is referenced by: f1omoALT 48899 |
| Copyright terms: Public domain | W3C validator |