Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvconstdomi | Structured version Visualization version GIF version |
Description: A constant function's value is dominated by the constant. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.) |
Ref | Expression |
---|---|
fvconstdomi.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvconstdomi | ⊢ ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmxpss 6063 | . . . . 5 ⊢ dom (𝐴 × {𝐵}) ⊆ 𝐴 | |
2 | 1 | sseli 3913 | . . . 4 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑋 ∈ 𝐴) |
3 | fvconstdomi.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
4 | 3 | fvconst2 7061 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
6 | domrefg 8730 | . . . 4 ⊢ (𝐵 ∈ V → 𝐵 ≼ 𝐵) | |
7 | 3, 6 | ax-mp 5 | . . 3 ⊢ 𝐵 ≼ 𝐵 |
8 | 5, 7 | eqbrtrdi 5109 | . 2 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵) |
9 | ndmfv 6786 | . . 3 ⊢ (¬ 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = ∅) | |
10 | 3 | 0dom 8843 | . . 3 ⊢ ∅ ≼ 𝐵 |
11 | 9, 10 | eqbrtrdi 5109 | . 2 ⊢ (¬ 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵) |
12 | 8, 11 | pm2.61i 182 | 1 ⊢ ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {csn 4558 class class class wbr 5070 × cxp 5578 dom cdm 5580 ‘cfv 6418 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-en 8692 df-dom 8693 |
This theorem is referenced by: f1omoALT 46077 |
Copyright terms: Public domain | W3C validator |