| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptnf | Structured version Visualization version GIF version | ||
| Description: The value of a function given by an ordered-pair class abstraction is the empty set when the class it would otherwise map to is a proper class. This version of fvmptn 6954 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| fvmptf.2 | ⊢ Ⅎ𝑥𝐶 |
| fvmptf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptf.4 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptnf | ⊢ (¬ 𝐶 ∈ V → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptf.4 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 2 | 1 | dmmptss 6188 | . . . 4 ⊢ dom 𝐹 ⊆ 𝐷 |
| 3 | 2 | sseli 3925 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ 𝐷) |
| 4 | eqid 2731 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐷 ↦ ( I ‘𝐵)) = (𝑥 ∈ 𝐷 ↦ ( I ‘𝐵)) | |
| 5 | 1, 4 | fvmptex 6943 | . . . . . 6 ⊢ (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ ( I ‘𝐵))‘𝐴) |
| 6 | fvex 6835 | . . . . . . 7 ⊢ ( I ‘𝐶) ∈ V | |
| 7 | fvmptf.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 8 | nfcv 2894 | . . . . . . . . 9 ⊢ Ⅎ𝑥 I | |
| 9 | fvmptf.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐶 | |
| 10 | 8, 9 | nffv 6832 | . . . . . . . 8 ⊢ Ⅎ𝑥( I ‘𝐶) |
| 11 | fvmptf.3 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 12 | 11 | fveq2d 6826 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ( I ‘𝐵) = ( I ‘𝐶)) |
| 13 | 7, 10, 12, 4 | fvmptf 6950 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐷 ∧ ( I ‘𝐶) ∈ V) → ((𝑥 ∈ 𝐷 ↦ ( I ‘𝐵))‘𝐴) = ( I ‘𝐶)) |
| 14 | 6, 13 | mpan2 691 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → ((𝑥 ∈ 𝐷 ↦ ( I ‘𝐵))‘𝐴) = ( I ‘𝐶)) |
| 15 | 5, 14 | eqtrid 2778 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ( I ‘𝐶)) |
| 16 | fvprc 6814 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → ( I ‘𝐶) = ∅) | |
| 17 | 15, 16 | sylan9eq 2786 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹‘𝐴) = ∅) |
| 18 | 17 | expcom 413 | . . 3 ⊢ (¬ 𝐶 ∈ V → (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ∅)) |
| 19 | 3, 18 | syl5 34 | . 2 ⊢ (¬ 𝐶 ∈ V → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
| 20 | ndmfv 6854 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 21 | 19, 20 | pm2.61d1 180 | 1 ⊢ (¬ 𝐶 ∈ V → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 Vcvv 3436 ∅c0 4280 ↦ cmpt 5170 I cid 5508 dom cdm 5614 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: fvmptn 6954 rdgsucmptnf 8348 frsucmptn 8358 |
| Copyright terms: Public domain | W3C validator |