Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptnf | Structured version Visualization version GIF version |
Description: The value of a function given by an ordered-pair class abstraction is the empty set when the class it would otherwise map to is a proper class. This version of fvmptn 6931 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
fvmptf.2 | ⊢ Ⅎ𝑥𝐶 |
fvmptf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptf.4 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptnf | ⊢ (¬ 𝐶 ∈ V → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptf.4 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
2 | 1 | dmmptss 6159 | . . . 4 ⊢ dom 𝐹 ⊆ 𝐷 |
3 | 2 | sseli 3922 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ 𝐷) |
4 | eqid 2736 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐷 ↦ ( I ‘𝐵)) = (𝑥 ∈ 𝐷 ↦ ( I ‘𝐵)) | |
5 | 1, 4 | fvmptex 6921 | . . . . . 6 ⊢ (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ ( I ‘𝐵))‘𝐴) |
6 | fvex 6817 | . . . . . . 7 ⊢ ( I ‘𝐶) ∈ V | |
7 | fvmptf.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
8 | nfcv 2905 | . . . . . . . . 9 ⊢ Ⅎ𝑥 I | |
9 | fvmptf.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐶 | |
10 | 8, 9 | nffv 6814 | . . . . . . . 8 ⊢ Ⅎ𝑥( I ‘𝐶) |
11 | fvmptf.3 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
12 | 11 | fveq2d 6808 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ( I ‘𝐵) = ( I ‘𝐶)) |
13 | 7, 10, 12, 4 | fvmptf 6928 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐷 ∧ ( I ‘𝐶) ∈ V) → ((𝑥 ∈ 𝐷 ↦ ( I ‘𝐵))‘𝐴) = ( I ‘𝐶)) |
14 | 6, 13 | mpan2 689 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → ((𝑥 ∈ 𝐷 ↦ ( I ‘𝐵))‘𝐴) = ( I ‘𝐶)) |
15 | 5, 14 | eqtrid 2788 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ( I ‘𝐶)) |
16 | fvprc 6796 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → ( I ‘𝐶) = ∅) | |
17 | 15, 16 | sylan9eq 2796 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹‘𝐴) = ∅) |
18 | 17 | expcom 415 | . . 3 ⊢ (¬ 𝐶 ∈ V → (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ∅)) |
19 | 3, 18 | syl5 34 | . 2 ⊢ (¬ 𝐶 ∈ V → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅)) |
20 | ndmfv 6836 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
21 | 19, 20 | pm2.61d1 180 | 1 ⊢ (¬ 𝐶 ∈ V → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2104 Ⅎwnfc 2885 Vcvv 3437 ∅c0 4262 ↦ cmpt 5164 I cid 5499 dom cdm 5600 ‘cfv 6458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-fv 6466 |
This theorem is referenced by: fvmptn 6931 rdgsucmptnf 8291 frsucmptn 8301 |
Copyright terms: Public domain | W3C validator |