MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnf Structured version   Visualization version   GIF version

Theorem fvmptnf 6929
Description: The value of a function given by an ordered-pair class abstraction is the empty set when the class it would otherwise map to is a proper class. This version of fvmptn 6931 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvmptf.1 𝑥𝐴
fvmptf.2 𝑥𝐶
fvmptf.3 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptf.4 𝐹 = (𝑥𝐷𝐵)
Assertion
Ref Expression
fvmptnf 𝐶 ∈ V → (𝐹𝐴) = ∅)
Distinct variable group:   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptnf
StepHypRef Expression
1 fvmptf.4 . . . . 5 𝐹 = (𝑥𝐷𝐵)
21dmmptss 6159 . . . 4 dom 𝐹𝐷
32sseli 3922 . . 3 (𝐴 ∈ dom 𝐹𝐴𝐷)
4 eqid 2736 . . . . . . 7 (𝑥𝐷 ↦ ( I ‘𝐵)) = (𝑥𝐷 ↦ ( I ‘𝐵))
51, 4fvmptex 6921 . . . . . 6 (𝐹𝐴) = ((𝑥𝐷 ↦ ( I ‘𝐵))‘𝐴)
6 fvex 6817 . . . . . . 7 ( I ‘𝐶) ∈ V
7 fvmptf.1 . . . . . . . 8 𝑥𝐴
8 nfcv 2905 . . . . . . . . 9 𝑥 I
9 fvmptf.2 . . . . . . . . 9 𝑥𝐶
108, 9nffv 6814 . . . . . . . 8 𝑥( I ‘𝐶)
11 fvmptf.3 . . . . . . . . 9 (𝑥 = 𝐴𝐵 = 𝐶)
1211fveq2d 6808 . . . . . . . 8 (𝑥 = 𝐴 → ( I ‘𝐵) = ( I ‘𝐶))
137, 10, 12, 4fvmptf 6928 . . . . . . 7 ((𝐴𝐷 ∧ ( I ‘𝐶) ∈ V) → ((𝑥𝐷 ↦ ( I ‘𝐵))‘𝐴) = ( I ‘𝐶))
146, 13mpan2 689 . . . . . 6 (𝐴𝐷 → ((𝑥𝐷 ↦ ( I ‘𝐵))‘𝐴) = ( I ‘𝐶))
155, 14eqtrid 2788 . . . . 5 (𝐴𝐷 → (𝐹𝐴) = ( I ‘𝐶))
16 fvprc 6796 . . . . 5 𝐶 ∈ V → ( I ‘𝐶) = ∅)
1715, 16sylan9eq 2796 . . . 4 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹𝐴) = ∅)
1817expcom 415 . . 3 𝐶 ∈ V → (𝐴𝐷 → (𝐹𝐴) = ∅))
193, 18syl5 34 . 2 𝐶 ∈ V → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅))
20 ndmfv 6836 . 2 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
2119, 20pm2.61d1 180 1 𝐶 ∈ V → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2104  wnfc 2885  Vcvv 3437  c0 4262  cmpt 5164   I cid 5499  dom cdm 5600  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-fv 6466
This theorem is referenced by:  fvmptn  6931  rdgsucmptnf  8291  frsucmptn  8301
  Copyright terms: Public domain W3C validator