MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnf Structured version   Visualization version   GIF version

Theorem fvmptnf 6951
Description: The value of a function given by an ordered-pair class abstraction is the empty set when the class it would otherwise map to is a proper class. This version of fvmptn 6954 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvmptf.1 𝑥𝐴
fvmptf.2 𝑥𝐶
fvmptf.3 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptf.4 𝐹 = (𝑥𝐷𝐵)
Assertion
Ref Expression
fvmptnf 𝐶 ∈ V → (𝐹𝐴) = ∅)
Distinct variable group:   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptnf
StepHypRef Expression
1 fvmptf.4 . . . . 5 𝐹 = (𝑥𝐷𝐵)
21dmmptss 6188 . . . 4 dom 𝐹𝐷
32sseli 3925 . . 3 (𝐴 ∈ dom 𝐹𝐴𝐷)
4 eqid 2731 . . . . . . 7 (𝑥𝐷 ↦ ( I ‘𝐵)) = (𝑥𝐷 ↦ ( I ‘𝐵))
51, 4fvmptex 6943 . . . . . 6 (𝐹𝐴) = ((𝑥𝐷 ↦ ( I ‘𝐵))‘𝐴)
6 fvex 6835 . . . . . . 7 ( I ‘𝐶) ∈ V
7 fvmptf.1 . . . . . . . 8 𝑥𝐴
8 nfcv 2894 . . . . . . . . 9 𝑥 I
9 fvmptf.2 . . . . . . . . 9 𝑥𝐶
108, 9nffv 6832 . . . . . . . 8 𝑥( I ‘𝐶)
11 fvmptf.3 . . . . . . . . 9 (𝑥 = 𝐴𝐵 = 𝐶)
1211fveq2d 6826 . . . . . . . 8 (𝑥 = 𝐴 → ( I ‘𝐵) = ( I ‘𝐶))
137, 10, 12, 4fvmptf 6950 . . . . . . 7 ((𝐴𝐷 ∧ ( I ‘𝐶) ∈ V) → ((𝑥𝐷 ↦ ( I ‘𝐵))‘𝐴) = ( I ‘𝐶))
146, 13mpan2 691 . . . . . 6 (𝐴𝐷 → ((𝑥𝐷 ↦ ( I ‘𝐵))‘𝐴) = ( I ‘𝐶))
155, 14eqtrid 2778 . . . . 5 (𝐴𝐷 → (𝐹𝐴) = ( I ‘𝐶))
16 fvprc 6814 . . . . 5 𝐶 ∈ V → ( I ‘𝐶) = ∅)
1715, 16sylan9eq 2786 . . . 4 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹𝐴) = ∅)
1817expcom 413 . . 3 𝐶 ∈ V → (𝐴𝐷 → (𝐹𝐴) = ∅))
193, 18syl5 34 . 2 𝐶 ∈ V → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅))
20 ndmfv 6854 . 2 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
2119, 20pm2.61d1 180 1 𝐶 ∈ V → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  wnfc 2879  Vcvv 3436  c0 4280  cmpt 5170   I cid 5508  dom cdm 5614  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  fvmptn  6954  rdgsucmptnf  8348  frsucmptn  8358
  Copyright terms: Public domain W3C validator