![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptss2 | Structured version Visualization version GIF version |
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) |
Ref | Expression |
---|---|
fvmptn.1 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) |
fvmptn.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptss2 | ⊢ (𝐹‘𝐷) ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptn.1 | . . . . 5 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | |
2 | 1 | eleq1d 2818 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
3 | fvmptn.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | dmmpt 6239 | . . . 4 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
5 | 2, 4 | elrab2 3686 | . . 3 ⊢ (𝐷 ∈ dom 𝐹 ↔ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ V)) |
6 | 1, 3 | fvmptg 6996 | . . . 4 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ V) → (𝐹‘𝐷) = 𝐶) |
7 | eqimss 4040 | . . . 4 ⊢ ((𝐹‘𝐷) = 𝐶 → (𝐹‘𝐷) ⊆ 𝐶) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ V) → (𝐹‘𝐷) ⊆ 𝐶) |
9 | 5, 8 | sylbi 216 | . 2 ⊢ (𝐷 ∈ dom 𝐹 → (𝐹‘𝐷) ⊆ 𝐶) |
10 | ndmfv 6926 | . . 3 ⊢ (¬ 𝐷 ∈ dom 𝐹 → (𝐹‘𝐷) = ∅) | |
11 | 0ss 4396 | . . 3 ⊢ ∅ ⊆ 𝐶 | |
12 | 10, 11 | eqsstrdi 4036 | . 2 ⊢ (¬ 𝐷 ∈ dom 𝐹 → (𝐹‘𝐷) ⊆ 𝐶) |
13 | 9, 12 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐷) ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 ∅c0 4322 ↦ cmpt 5231 dom cdm 5676 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 |
This theorem is referenced by: cvmsi 34251 |
Copyright terms: Public domain | W3C validator |