![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptss2 | Structured version Visualization version GIF version |
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) |
Ref | Expression |
---|---|
fvmptn.1 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) |
fvmptn.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptss2 | ⊢ (𝐹‘𝐷) ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptn.1 | . . . . 5 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | |
2 | 1 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
3 | fvmptn.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | dmmpt 6271 | . . . 4 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
5 | 2, 4 | elrab2 3711 | . . 3 ⊢ (𝐷 ∈ dom 𝐹 ↔ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ V)) |
6 | 1, 3 | fvmptg 7027 | . . . 4 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ V) → (𝐹‘𝐷) = 𝐶) |
7 | eqimss 4067 | . . . 4 ⊢ ((𝐹‘𝐷) = 𝐶 → (𝐹‘𝐷) ⊆ 𝐶) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ V) → (𝐹‘𝐷) ⊆ 𝐶) |
9 | 5, 8 | sylbi 217 | . 2 ⊢ (𝐷 ∈ dom 𝐹 → (𝐹‘𝐷) ⊆ 𝐶) |
10 | ndmfv 6955 | . . 3 ⊢ (¬ 𝐷 ∈ dom 𝐹 → (𝐹‘𝐷) = ∅) | |
11 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ 𝐶 | |
12 | 10, 11 | eqsstrdi 4063 | . 2 ⊢ (¬ 𝐷 ∈ dom 𝐹 → (𝐹‘𝐷) ⊆ 𝐶) |
13 | 9, 12 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐷) ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: cvmsi 35233 |
Copyright terms: Public domain | W3C validator |