MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptss2 Structured version   Visualization version   GIF version

Theorem fvmptss2 6997
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
fvmptn.1 (𝑥 = 𝐷𝐵 = 𝐶)
fvmptn.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmptss2 (𝐹𝐷) ⊆ 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptss2
StepHypRef Expression
1 fvmptn.1 . . . . 5 (𝑥 = 𝐷𝐵 = 𝐶)
21eleq1d 2814 . . . 4 (𝑥 = 𝐷 → (𝐵 ∈ V ↔ 𝐶 ∈ V))
3 fvmptn.2 . . . . 5 𝐹 = (𝑥𝐴𝐵)
43dmmpt 6216 . . . 4 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
52, 4elrab2 3665 . . 3 (𝐷 ∈ dom 𝐹 ↔ (𝐷𝐴𝐶 ∈ V))
61, 3fvmptg 6969 . . . 4 ((𝐷𝐴𝐶 ∈ V) → (𝐹𝐷) = 𝐶)
7 eqimss 4008 . . . 4 ((𝐹𝐷) = 𝐶 → (𝐹𝐷) ⊆ 𝐶)
86, 7syl 17 . . 3 ((𝐷𝐴𝐶 ∈ V) → (𝐹𝐷) ⊆ 𝐶)
95, 8sylbi 217 . 2 (𝐷 ∈ dom 𝐹 → (𝐹𝐷) ⊆ 𝐶)
10 ndmfv 6896 . . 3 𝐷 ∈ dom 𝐹 → (𝐹𝐷) = ∅)
11 0ss 4366 . . 3 ∅ ⊆ 𝐶
1210, 11eqsstrdi 3994 . 2 𝐷 ∈ dom 𝐹 → (𝐹𝐷) ⊆ 𝐶)
139, 12pm2.61i 182 1 (𝐹𝐷) ⊆ 𝐶
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  c0 4299  cmpt 5191  dom cdm 5641  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by:  cvmsi  35259
  Copyright terms: Public domain W3C validator