MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptss2 Structured version   Visualization version   GIF version

Theorem fvmptss2 7023
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
fvmptn.1 (𝑥 = 𝐷𝐵 = 𝐶)
fvmptn.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmptss2 (𝐹𝐷) ⊆ 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptss2
StepHypRef Expression
1 fvmptn.1 . . . . 5 (𝑥 = 𝐷𝐵 = 𝐶)
21eleq1d 2818 . . . 4 (𝑥 = 𝐷 → (𝐵 ∈ V ↔ 𝐶 ∈ V))
3 fvmptn.2 . . . . 5 𝐹 = (𝑥𝐴𝐵)
43dmmpt 6239 . . . 4 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
52, 4elrab2 3686 . . 3 (𝐷 ∈ dom 𝐹 ↔ (𝐷𝐴𝐶 ∈ V))
61, 3fvmptg 6996 . . . 4 ((𝐷𝐴𝐶 ∈ V) → (𝐹𝐷) = 𝐶)
7 eqimss 4040 . . . 4 ((𝐹𝐷) = 𝐶 → (𝐹𝐷) ⊆ 𝐶)
86, 7syl 17 . . 3 ((𝐷𝐴𝐶 ∈ V) → (𝐹𝐷) ⊆ 𝐶)
95, 8sylbi 216 . 2 (𝐷 ∈ dom 𝐹 → (𝐹𝐷) ⊆ 𝐶)
10 ndmfv 6926 . . 3 𝐷 ∈ dom 𝐹 → (𝐹𝐷) = ∅)
11 0ss 4396 . . 3 ∅ ⊆ 𝐶
1210, 11eqsstrdi 4036 . 2 𝐷 ∈ dom 𝐹 → (𝐹𝐷) ⊆ 𝐶)
139, 12pm2.61i 182 1 (𝐹𝐷) ⊆ 𝐶
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  wss 3948  c0 4322  cmpt 5231  dom cdm 5676  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551
This theorem is referenced by:  cvmsi  34251
  Copyright terms: Public domain W3C validator