![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfnfv | Structured version Visualization version GIF version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
eqfnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6966 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
2 | dffn5 6966 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
3 | eqeq12 2751 | . . 3 ⊢ ((𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∧ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) | |
4 | 1, 2, 3 | syl2anb 598 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) |
5 | fvex 6919 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
6 | 5 | rgenw 3062 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
7 | mpteqb 7034 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
9 | 4, 8 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 Vcvv 3477 ↦ cmpt 5230 Fn wfn 6557 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-fv 6570 |
This theorem is referenced by: eqfnfv2 7051 eqfnfvd 7053 eqfnfv2f 7054 eqfnun 7056 fvreseq0 7057 fnmptfvd 7060 fndmdifeq0 7063 fneqeql 7065 fnnfpeq0 7197 fprb 7213 fconst2g 7222 cocan1 7310 cocan2 7311 weniso 7373 fsplitfpar 8141 fnsuppres 8214 tfr3 8437 ixpfi2 9387 fipreima 9395 updjud 9971 fseqenlem1 10061 fpwwe2lem7 10674 ofsubeq0 12260 ser0f 14092 hashgval2 14413 hashf1lem1 14490 prodf1f 15924 efcvgfsum 16118 prmreclem2 16950 1arithlem4 16959 1arith 16960 smndex1n0mnd 18937 isgrpinv 19023 dprdf11 20057 frlmplusgvalb 21806 frlmvscavalb 21807 islindf4 21875 psrbagconf1o 21966 pthaus 23661 xkohaus 23676 cnmpt11 23686 cnmpt21 23694 prdsxmetlem 24393 rrxmet 25455 rolle 26042 tdeglem4 26113 resinf1o 26592 dchrelbas2 27295 dchreq 27316 eqeefv 28932 axlowdimlem14 28984 elntg2 29014 nmlno0lem 30821 phoeqi 30885 occllem 31331 dfiop2 31781 hoeq 31788 ho01i 31856 hoeq1 31858 kbpj 31984 nmlnop0iALT 32023 lnopco0i 32032 nlelchi 32089 rnbra 32135 kbass5 32148 hmopidmchi 32179 hmopidmpji 32180 pjssdif2i 32202 pjinvari 32219 bnj1542 34849 bnj580 34905 subfacp1lem3 35166 subfacp1lem5 35168 mrsubff1 35498 msubff1 35540 faclimlem1 35722 rdgprc 35775 broucube 37640 cocanfo 37705 sdclem2 37728 rrnmet 37815 rrnequiv 37821 ltrnid 40117 ltrneq2 40130 tendoeq1 40746 sticksstones1 42127 pw2f1ocnv 43025 caofcan 44318 addrcom 44470 fsneq 45148 dvnprodlem1 45901 cfsetsnfsetf1 47008 cfsetsnfsetfo 47009 rrx2pnecoorneor 48564 rrx2linest 48591 |
Copyright terms: Public domain | W3C validator |