![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfnfv | Structured version Visualization version GIF version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
eqfnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6488 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
2 | dffn5 6488 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
3 | eqeq12 2838 | . . 3 ⊢ ((𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∧ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) | |
4 | 1, 2, 3 | syl2anb 591 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) |
5 | fvex 6446 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
6 | 5 | rgenw 3133 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
7 | mpteqb 6546 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
9 | 4, 8 | syl6bb 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 Vcvv 3414 ↦ cmpt 4952 Fn wfn 6118 ‘cfv 6123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-fv 6131 |
This theorem is referenced by: eqfnfv2 6561 eqfnfvd 6563 eqfnfv2f 6564 fvreseq0 6566 fnmptfvd 6569 fndmdifeq0 6572 fneqeql 6574 fnnfpeq0 6696 fconst2g 6724 cocan1 6801 cocan2 6802 weniso 6859 fnsuppres 7587 tfr3 7761 ixpfi2 8533 fipreima 8541 updjud 9073 fseqenlem1 9160 fpwwe2lem8 9774 ofsubeq0 11347 ser0f 13148 hashgval2 13457 hashf1lem1 13528 prodf1f 14997 efcvgfsum 15188 prmreclem2 15992 1arithlem4 16001 1arith 16002 isgrpinv 17826 dprdf11 18776 psrbagconf1o 19735 frlmplusgvalb 20475 frlmvscavalb 20476 islindf4 20544 pthaus 21812 xkohaus 21827 cnmpt11 21837 cnmpt21 21845 prdsxmetlem 22543 rrxmet 23576 rolle 24152 tdeglem4 24219 resinf1o 24682 dchrelbas2 25375 dchreq 25396 eqeefv 26202 axlowdimlem14 26254 elntg2 26284 nmlno0lem 28192 phoeqi 28257 occllem 28706 dfiop2 29156 hoeq 29163 ho01i 29231 hoeq1 29233 kbpj 29359 nmlnop0iALT 29398 lnopco0i 29407 nlelchi 29464 rnbra 29510 kbass5 29523 hmopidmchi 29554 hmopidmpji 29555 pjssdif2i 29577 pjinvari 29594 bnj1542 31462 bnj580 31518 subfacp1lem3 31699 subfacp1lem5 31701 mrsubff1 31946 msubff1 31988 faclimlem1 32160 fprb 32200 rdgprc 32227 broucube 33980 cocanfo 34048 eqfnun 34052 sdclem2 34073 rrnmet 34163 rrnequiv 34169 ltrnid 36203 ltrneq2 36216 tendoeq1 36832 pw2f1ocnv 38440 caofcan 39355 addrcom 39510 fsneq 40197 dvnprodlem1 40949 rrx2linest 43289 |
Copyright terms: Public domain | W3C validator |