| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnfv | Structured version Visualization version GIF version | ||
| Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| eqfnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 6919 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 2 | dffn5 6919 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
| 3 | eqeq12 2746 | . . 3 ⊢ ((𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∧ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) | |
| 4 | 1, 2, 3 | syl2anb 598 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) |
| 5 | fvex 6871 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 6 | 5 | rgenw 3048 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
| 7 | mpteqb 6987 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 9 | 4, 8 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ↦ cmpt 5188 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: eqfnfv2 7004 eqfnfvd 7006 eqfnfv2f 7007 eqfnun 7009 fvreseq0 7010 fnmptfvd 7013 fndmdifeq0 7016 fneqeql 7018 fnnfpeq0 7152 fprb 7168 fconst2g 7177 cocan1 7266 cocan2 7267 weniso 7329 fsplitfpar 8097 fnsuppres 8170 tfr3 8367 ixpfi2 9301 fipreima 9309 updjud 9887 fseqenlem1 9977 fpwwe2lem7 10590 ofsubeq0 12183 ser0f 14020 hashgval2 14343 hashf1lem1 14420 prodf1f 15858 efcvgfsum 16052 prmreclem2 16888 1arithlem4 16897 1arith 16898 smndex1n0mnd 18839 isgrpinv 18925 dprdf11 19955 frlmplusgvalb 21678 frlmvscavalb 21679 islindf4 21747 psrbagconf1o 21838 pthaus 23525 xkohaus 23540 cnmpt11 23550 cnmpt21 23558 prdsxmetlem 24256 rrxmet 25308 rolle 25894 tdeglem4 25965 resinf1o 26445 dchrelbas2 27148 dchreq 27169 eqeefv 28830 axlowdimlem14 28882 elntg2 28912 nmlno0lem 30722 phoeqi 30786 occllem 31232 dfiop2 31682 hoeq 31689 ho01i 31757 hoeq1 31759 kbpj 31885 nmlnop0iALT 31924 lnopco0i 31933 nlelchi 31990 rnbra 32036 kbass5 32049 hmopidmchi 32080 hmopidmpji 32081 pjssdif2i 32103 pjinvari 32120 bnj1542 34847 bnj580 34903 subfacp1lem3 35169 subfacp1lem5 35171 mrsubff1 35501 msubff1 35543 faclimlem1 35730 rdgprc 35782 broucube 37648 cocanfo 37713 sdclem2 37736 rrnmet 37823 rrnequiv 37829 ltrnid 40129 ltrneq2 40142 tendoeq1 40758 sticksstones1 42134 pw2f1ocnv 43026 caofcan 44312 addrcom 44464 fsneq 45200 dvnprodlem1 45944 cfsetsnfsetf1 47060 cfsetsnfsetfo 47061 rrx2pnecoorneor 48704 rrx2linest 48731 dfinito4 49490 |
| Copyright terms: Public domain | W3C validator |