![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfnfv | Structured version Visualization version GIF version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
eqfnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6980 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
2 | dffn5 6980 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
3 | eqeq12 2757 | . . 3 ⊢ ((𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∧ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) | |
4 | 1, 2, 3 | syl2anb 597 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) |
5 | fvex 6933 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
6 | 5 | rgenw 3071 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
7 | mpteqb 7048 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
9 | 4, 8 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ↦ cmpt 5249 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: eqfnfv2 7065 eqfnfvd 7067 eqfnfv2f 7068 eqfnun 7070 fvreseq0 7071 fnmptfvd 7074 fndmdifeq0 7077 fneqeql 7079 fnnfpeq0 7212 fprb 7231 fconst2g 7240 cocan1 7327 cocan2 7328 weniso 7390 fsplitfpar 8159 fnsuppres 8232 tfr3 8455 ixpfi2 9420 fipreima 9428 updjud 10003 fseqenlem1 10093 fpwwe2lem7 10706 ofsubeq0 12290 ser0f 14106 hashgval2 14427 hashf1lem1 14504 prodf1f 15940 efcvgfsum 16134 prmreclem2 16964 1arithlem4 16973 1arith 16974 smndex1n0mnd 18947 isgrpinv 19033 dprdf11 20067 frlmplusgvalb 21812 frlmvscavalb 21813 islindf4 21881 psrbagconf1o 21972 pthaus 23667 xkohaus 23682 cnmpt11 23692 cnmpt21 23700 prdsxmetlem 24399 rrxmet 25461 rolle 26048 tdeglem4 26119 resinf1o 26596 dchrelbas2 27299 dchreq 27320 eqeefv 28936 axlowdimlem14 28988 elntg2 29018 nmlno0lem 30825 phoeqi 30889 occllem 31335 dfiop2 31785 hoeq 31792 ho01i 31860 hoeq1 31862 kbpj 31988 nmlnop0iALT 32027 lnopco0i 32036 nlelchi 32093 rnbra 32139 kbass5 32152 hmopidmchi 32183 hmopidmpji 32184 pjssdif2i 32206 pjinvari 32223 bnj1542 34833 bnj580 34889 subfacp1lem3 35150 subfacp1lem5 35152 mrsubff1 35482 msubff1 35524 faclimlem1 35705 rdgprc 35758 broucube 37614 cocanfo 37679 sdclem2 37702 rrnmet 37789 rrnequiv 37795 ltrnid 40092 ltrneq2 40105 tendoeq1 40721 sticksstones1 42103 pw2f1ocnv 42994 caofcan 44292 addrcom 44444 fsneq 45113 dvnprodlem1 45867 cfsetsnfsetf1 46974 cfsetsnfsetfo 46975 rrx2pnecoorneor 48449 rrx2linest 48476 |
Copyright terms: Public domain | W3C validator |