Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqfnfv | Structured version Visualization version GIF version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
eqfnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6810 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
2 | dffn5 6810 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
3 | eqeq12 2755 | . . 3 ⊢ ((𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∧ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) | |
4 | 1, 2, 3 | syl2anb 597 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) |
5 | fvex 6769 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
6 | 5 | rgenw 3075 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
7 | mpteqb 6876 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
9 | 4, 8 | bitrdi 286 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ↦ cmpt 5153 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: eqfnfv2 6892 eqfnfvd 6894 eqfnfv2f 6895 fvreseq0 6897 fnmptfvd 6900 fndmdifeq0 6903 fneqeql 6905 fnnfpeq0 7032 fprb 7051 fconst2g 7060 cocan1 7143 cocan2 7144 weniso 7205 fsplitfpar 7930 fnsuppres 7978 tfr3 8201 ixpfi2 9047 fipreima 9055 updjud 9623 fseqenlem1 9711 fpwwe2lem7 10324 ofsubeq0 11900 ser0f 13704 hashgval2 14021 hashf1lem1 14096 hashf1lem1OLD 14097 prodf1f 15532 efcvgfsum 15723 prmreclem2 16546 1arithlem4 16555 1arith 16556 smndex1n0mnd 18466 isgrpinv 18547 dprdf11 19541 frlmplusgvalb 20886 frlmvscavalb 20887 islindf4 20955 psrbagconf1o 21049 psrbagconf1oOLD 21050 pthaus 22697 xkohaus 22712 cnmpt11 22722 cnmpt21 22730 prdsxmetlem 23429 rrxmet 24477 rolle 25059 tdeglem4 25129 tdeglem4OLD 25130 resinf1o 25597 dchrelbas2 26290 dchreq 26311 eqeefv 27174 axlowdimlem14 27226 elntg2 27256 nmlno0lem 29056 phoeqi 29120 occllem 29566 dfiop2 30016 hoeq 30023 ho01i 30091 hoeq1 30093 kbpj 30219 nmlnop0iALT 30258 lnopco0i 30267 nlelchi 30324 rnbra 30370 kbass5 30383 hmopidmchi 30414 hmopidmpji 30415 pjssdif2i 30437 pjinvari 30454 bnj1542 32737 bnj580 32793 subfacp1lem3 33044 subfacp1lem5 33046 mrsubff1 33376 msubff1 33418 faclimlem1 33615 rdgprc 33676 broucube 35738 cocanfo 35803 eqfnun 35807 sdclem2 35827 rrnmet 35914 rrnequiv 35920 ltrnid 38076 ltrneq2 38089 tendoeq1 38705 sticksstones1 40030 pw2f1ocnv 40775 caofcan 41830 addrcom 41982 fsneq 42635 dvnprodlem1 43377 cfsetsnfsetf1 44440 cfsetsnfsetfo 44441 rrx2pnecoorneor 45949 rrx2linest 45976 |
Copyright terms: Public domain | W3C validator |