![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfnfv | Structured version Visualization version GIF version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
eqfnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6951 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
2 | dffn5 6951 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
3 | eqeq12 2750 | . . 3 ⊢ ((𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∧ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) | |
4 | 1, 2, 3 | syl2anb 599 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) |
5 | fvex 6905 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
6 | 5 | rgenw 3066 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
7 | mpteqb 7018 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
9 | 4, 8 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 ↦ cmpt 5232 Fn wfn 6539 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 |
This theorem is referenced by: eqfnfv2 7034 eqfnfvd 7036 eqfnfv2f 7037 eqfnun 7039 fvreseq0 7040 fnmptfvd 7043 fndmdifeq0 7046 fneqeql 7048 fnnfpeq0 7176 fprb 7195 fconst2g 7204 cocan1 7289 cocan2 7290 weniso 7351 fsplitfpar 8104 fnsuppres 8176 tfr3 8399 ixpfi2 9350 fipreima 9358 updjud 9929 fseqenlem1 10019 fpwwe2lem7 10632 ofsubeq0 12209 ser0f 14021 hashgval2 14338 hashf1lem1 14415 hashf1lem1OLD 14416 prodf1f 15838 efcvgfsum 16029 prmreclem2 16850 1arithlem4 16859 1arith 16860 smndex1n0mnd 18793 isgrpinv 18878 dprdf11 19893 frlmplusgvalb 21324 frlmvscavalb 21325 islindf4 21393 psrbagconf1o 21489 psrbagconf1oOLD 21490 pthaus 23142 xkohaus 23157 cnmpt11 23167 cnmpt21 23175 prdsxmetlem 23874 rrxmet 24925 rolle 25507 tdeglem4 25577 tdeglem4OLD 25578 resinf1o 26045 dchrelbas2 26740 dchreq 26761 eqeefv 28161 axlowdimlem14 28213 elntg2 28243 nmlno0lem 30046 phoeqi 30110 occllem 30556 dfiop2 31006 hoeq 31013 ho01i 31081 hoeq1 31083 kbpj 31209 nmlnop0iALT 31248 lnopco0i 31257 nlelchi 31314 rnbra 31360 kbass5 31373 hmopidmchi 31404 hmopidmpji 31405 pjssdif2i 31427 pjinvari 31444 bnj1542 33868 bnj580 33924 subfacp1lem3 34173 subfacp1lem5 34175 mrsubff1 34505 msubff1 34547 faclimlem1 34713 rdgprc 34766 broucube 36522 cocanfo 36587 sdclem2 36610 rrnmet 36697 rrnequiv 36703 ltrnid 39006 ltrneq2 39019 tendoeq1 39635 sticksstones1 40962 pw2f1ocnv 41776 caofcan 43082 addrcom 43234 fsneq 43905 dvnprodlem1 44662 cfsetsnfsetf1 45769 cfsetsnfsetfo 45770 rrx2pnecoorneor 47401 rrx2linest 47428 |
Copyright terms: Public domain | W3C validator |