| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnfv | Structured version Visualization version GIF version | ||
| Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| eqfnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 6936 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 2 | dffn5 6936 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
| 3 | eqeq12 2752 | . . 3 ⊢ ((𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∧ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) | |
| 4 | 1, 2, 3 | syl2anb 598 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) |
| 5 | fvex 6888 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 6 | 5 | rgenw 3055 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
| 7 | mpteqb 7004 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 9 | 4, 8 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ↦ cmpt 5201 Fn wfn 6525 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-fv 6538 |
| This theorem is referenced by: eqfnfv2 7021 eqfnfvd 7023 eqfnfv2f 7024 eqfnun 7026 fvreseq0 7027 fnmptfvd 7030 fndmdifeq0 7033 fneqeql 7035 fnnfpeq0 7169 fprb 7185 fconst2g 7194 cocan1 7283 cocan2 7284 weniso 7346 fsplitfpar 8115 fnsuppres 8188 tfr3 8411 ixpfi2 9360 fipreima 9368 updjud 9946 fseqenlem1 10036 fpwwe2lem7 10649 ofsubeq0 12235 ser0f 14071 hashgval2 14394 hashf1lem1 14471 prodf1f 15906 efcvgfsum 16100 prmreclem2 16935 1arithlem4 16944 1arith 16945 smndex1n0mnd 18888 isgrpinv 18974 dprdf11 20004 frlmplusgvalb 21727 frlmvscavalb 21728 islindf4 21796 psrbagconf1o 21887 pthaus 23574 xkohaus 23589 cnmpt11 23599 cnmpt21 23607 prdsxmetlem 24305 rrxmet 25358 rolle 25944 tdeglem4 26015 resinf1o 26495 dchrelbas2 27198 dchreq 27219 eqeefv 28828 axlowdimlem14 28880 elntg2 28910 nmlno0lem 30720 phoeqi 30784 occllem 31230 dfiop2 31680 hoeq 31687 ho01i 31755 hoeq1 31757 kbpj 31883 nmlnop0iALT 31922 lnopco0i 31931 nlelchi 31988 rnbra 32034 kbass5 32047 hmopidmchi 32078 hmopidmpji 32079 pjssdif2i 32101 pjinvari 32118 bnj1542 34834 bnj580 34890 subfacp1lem3 35150 subfacp1lem5 35152 mrsubff1 35482 msubff1 35524 faclimlem1 35706 rdgprc 35758 broucube 37624 cocanfo 37689 sdclem2 37712 rrnmet 37799 rrnequiv 37805 ltrnid 40100 ltrneq2 40113 tendoeq1 40729 sticksstones1 42105 pw2f1ocnv 43008 caofcan 44295 addrcom 44447 fsneq 45178 dvnprodlem1 45923 cfsetsnfsetf1 47036 cfsetsnfsetfo 47037 rrx2pnecoorneor 48643 rrx2linest 48670 dfinito4 49334 |
| Copyright terms: Public domain | W3C validator |