| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnfv | Structured version Visualization version GIF version | ||
| Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| eqfnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 6901 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 2 | dffn5 6901 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
| 3 | eqeq12 2746 | . . 3 ⊢ ((𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∧ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) | |
| 4 | 1, 2, 3 | syl2anb 598 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) |
| 5 | fvex 6853 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 6 | 5 | rgenw 3048 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
| 7 | mpteqb 6969 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 9 | 4, 8 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ↦ cmpt 5183 Fn wfn 6494 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: eqfnfv2 6986 eqfnfvd 6988 eqfnfv2f 6989 eqfnun 6991 fvreseq0 6992 fnmptfvd 6995 fndmdifeq0 6998 fneqeql 7000 fnnfpeq0 7134 fprb 7150 fconst2g 7159 cocan1 7248 cocan2 7249 weniso 7311 fsplitfpar 8074 fnsuppres 8147 tfr3 8344 ixpfi2 9277 fipreima 9285 updjud 9863 fseqenlem1 9953 fpwwe2lem7 10566 ofsubeq0 12159 ser0f 13996 hashgval2 14319 hashf1lem1 14396 prodf1f 15834 efcvgfsum 16028 prmreclem2 16864 1arithlem4 16873 1arith 16874 smndex1n0mnd 18821 isgrpinv 18907 dprdf11 19939 frlmplusgvalb 21711 frlmvscavalb 21712 islindf4 21780 psrbagconf1o 21871 pthaus 23558 xkohaus 23573 cnmpt11 23583 cnmpt21 23591 prdsxmetlem 24289 rrxmet 25341 rolle 25927 tdeglem4 25998 resinf1o 26478 dchrelbas2 27181 dchreq 27202 eqeefv 28883 axlowdimlem14 28935 elntg2 28965 nmlno0lem 30772 phoeqi 30836 occllem 31282 dfiop2 31732 hoeq 31739 ho01i 31807 hoeq1 31809 kbpj 31935 nmlnop0iALT 31974 lnopco0i 31983 nlelchi 32040 rnbra 32086 kbass5 32099 hmopidmchi 32130 hmopidmpji 32131 pjssdif2i 32153 pjinvari 32170 bnj1542 34840 bnj580 34896 subfacp1lem3 35162 subfacp1lem5 35164 mrsubff1 35494 msubff1 35536 faclimlem1 35723 rdgprc 35775 broucube 37641 cocanfo 37706 sdclem2 37729 rrnmet 37816 rrnequiv 37822 ltrnid 40122 ltrneq2 40135 tendoeq1 40751 sticksstones1 42127 pw2f1ocnv 43019 caofcan 44305 addrcom 44457 fsneq 45193 dvnprodlem1 45937 cfsetsnfsetf1 47053 cfsetsnfsetfo 47054 rrx2pnecoorneor 48697 rrx2linest 48724 dfinito4 49483 |
| Copyright terms: Public domain | W3C validator |