Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqfnfv | Structured version Visualization version GIF version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
eqfnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6828 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
2 | dffn5 6828 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
3 | eqeq12 2755 | . . 3 ⊢ ((𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∧ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) | |
4 | 1, 2, 3 | syl2anb 598 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) |
5 | fvex 6787 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
6 | 5 | rgenw 3076 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
7 | mpteqb 6894 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
9 | 4, 8 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ↦ cmpt 5157 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: eqfnfv2 6910 eqfnfvd 6912 eqfnfv2f 6913 fvreseq0 6915 fnmptfvd 6918 fndmdifeq0 6921 fneqeql 6923 fnnfpeq0 7050 fprb 7069 fconst2g 7078 cocan1 7163 cocan2 7164 weniso 7225 fsplitfpar 7959 fnsuppres 8007 tfr3 8230 ixpfi2 9117 fipreima 9125 updjud 9692 fseqenlem1 9780 fpwwe2lem7 10393 ofsubeq0 11970 ser0f 13776 hashgval2 14093 hashf1lem1 14168 hashf1lem1OLD 14169 prodf1f 15604 efcvgfsum 15795 prmreclem2 16618 1arithlem4 16627 1arith 16628 smndex1n0mnd 18551 isgrpinv 18632 dprdf11 19626 frlmplusgvalb 20976 frlmvscavalb 20977 islindf4 21045 psrbagconf1o 21139 psrbagconf1oOLD 21140 pthaus 22789 xkohaus 22804 cnmpt11 22814 cnmpt21 22822 prdsxmetlem 23521 rrxmet 24572 rolle 25154 tdeglem4 25224 tdeglem4OLD 25225 resinf1o 25692 dchrelbas2 26385 dchreq 26406 eqeefv 27271 axlowdimlem14 27323 elntg2 27353 nmlno0lem 29155 phoeqi 29219 occllem 29665 dfiop2 30115 hoeq 30122 ho01i 30190 hoeq1 30192 kbpj 30318 nmlnop0iALT 30357 lnopco0i 30366 nlelchi 30423 rnbra 30469 kbass5 30482 hmopidmchi 30513 hmopidmpji 30514 pjssdif2i 30536 pjinvari 30553 bnj1542 32837 bnj580 32893 subfacp1lem3 33144 subfacp1lem5 33146 mrsubff1 33476 msubff1 33518 faclimlem1 33709 rdgprc 33770 broucube 35811 cocanfo 35876 eqfnun 35880 sdclem2 35900 rrnmet 35987 rrnequiv 35993 ltrnid 38149 ltrneq2 38162 tendoeq1 38778 sticksstones1 40102 pw2f1ocnv 40859 caofcan 41941 addrcom 42093 fsneq 42746 dvnprodlem1 43487 cfsetsnfsetf1 44553 cfsetsnfsetfo 44554 rrx2pnecoorneor 46061 rrx2linest 46088 |
Copyright terms: Public domain | W3C validator |