| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnfv | Structured version Visualization version GIF version | ||
| Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| eqfnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 6881 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 2 | dffn5 6881 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
| 3 | eqeq12 2746 | . . 3 ⊢ ((𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∧ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) | |
| 4 | 1, 2, 3 | syl2anb 598 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) |
| 5 | fvex 6835 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 6 | 5 | rgenw 3048 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
| 7 | mpteqb 6949 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 9 | 4, 8 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ↦ cmpt 5173 Fn wfn 6477 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 |
| This theorem is referenced by: eqfnfv2 6966 eqfnfvd 6968 eqfnfv2f 6969 eqfnun 6971 fvreseq0 6972 fnmptfvd 6975 fndmdifeq0 6978 fneqeql 6980 fnnfpeq0 7114 fprb 7130 fconst2g 7139 cocan1 7228 cocan2 7229 weniso 7291 fsplitfpar 8051 fnsuppres 8124 tfr3 8321 ixpfi2 9240 fipreima 9248 updjud 9830 fseqenlem1 9918 fpwwe2lem7 10531 ofsubeq0 12125 ser0f 13962 hashgval2 14285 hashf1lem1 14362 prodf1f 15799 efcvgfsum 15993 prmreclem2 16829 1arithlem4 16838 1arith 16839 smndex1n0mnd 18786 isgrpinv 18872 dprdf11 19904 frlmplusgvalb 21676 frlmvscavalb 21677 islindf4 21745 psrbagconf1o 21836 pthaus 23523 xkohaus 23538 cnmpt11 23548 cnmpt21 23556 prdsxmetlem 24254 rrxmet 25306 rolle 25892 tdeglem4 25963 resinf1o 26443 dchrelbas2 27146 dchreq 27167 eqeefv 28848 axlowdimlem14 28900 elntg2 28930 nmlno0lem 30737 phoeqi 30801 occllem 31247 dfiop2 31697 hoeq 31704 ho01i 31772 hoeq1 31774 kbpj 31900 nmlnop0iALT 31939 lnopco0i 31948 nlelchi 32005 rnbra 32051 kbass5 32064 hmopidmchi 32095 hmopidmpji 32096 pjssdif2i 32118 pjinvari 32135 bnj1542 34830 bnj580 34886 subfacp1lem3 35165 subfacp1lem5 35167 mrsubff1 35497 msubff1 35539 faclimlem1 35726 rdgprc 35778 broucube 37644 cocanfo 37709 sdclem2 37732 rrnmet 37819 rrnequiv 37825 ltrnid 40124 ltrneq2 40137 tendoeq1 40753 sticksstones1 42129 pw2f1ocnv 43020 caofcan 44306 addrcom 44458 fsneq 45194 dvnprodlem1 45937 cfsetsnfsetf1 47053 cfsetsnfsetfo 47054 rrx2pnecoorneor 48710 rrx2linest 48737 dfinito4 49496 |
| Copyright terms: Public domain | W3C validator |