| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnfv | Structured version Visualization version GIF version | ||
| Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| eqfnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 6880 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 2 | dffn5 6880 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
| 3 | eqeq12 2748 | . . 3 ⊢ ((𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∧ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) | |
| 4 | 1, 2, 3 | syl2anb 598 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) |
| 5 | fvex 6835 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 6 | 5 | rgenw 3051 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
| 7 | mpteqb 6948 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 9 | 4, 8 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ↦ cmpt 5170 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: eqfnfv2 6965 eqfnfvd 6967 eqfnfv2f 6968 eqfnun 6970 fvreseq0 6971 fnmptfvd 6974 fndmdifeq0 6977 fneqeql 6979 fnnfpeq0 7112 fprb 7128 fconst2g 7137 cocan1 7225 cocan2 7226 weniso 7288 fsplitfpar 8048 fnsuppres 8121 tfr3 8318 ixpfi2 9234 fipreima 9242 updjud 9827 fseqenlem1 9915 fpwwe2lem7 10528 ofsubeq0 12122 ser0f 13962 hashgval2 14285 hashf1lem1 14362 prodf1f 15799 efcvgfsum 15993 prmreclem2 16829 1arithlem4 16838 1arith 16839 smndex1n0mnd 18820 isgrpinv 18906 dprdf11 19937 frlmplusgvalb 21706 frlmvscavalb 21707 islindf4 21775 psrbagconf1o 21866 pthaus 23553 xkohaus 23568 cnmpt11 23578 cnmpt21 23586 prdsxmetlem 24283 rrxmet 25335 rolle 25921 tdeglem4 25992 resinf1o 26472 dchrelbas2 27175 dchreq 27196 eqeefv 28881 axlowdimlem14 28933 elntg2 28963 nmlno0lem 30773 phoeqi 30837 occllem 31283 dfiop2 31733 hoeq 31740 ho01i 31808 hoeq1 31810 kbpj 31936 nmlnop0iALT 31975 lnopco0i 31984 nlelchi 32041 rnbra 32087 kbass5 32100 hmopidmchi 32131 hmopidmpji 32132 pjssdif2i 32154 pjinvari 32171 bnj1542 34869 bnj580 34925 subfacp1lem3 35226 subfacp1lem5 35228 mrsubff1 35558 msubff1 35600 faclimlem1 35787 rdgprc 35836 broucube 37704 cocanfo 37769 sdclem2 37792 rrnmet 37879 rrnequiv 37885 ltrnid 40244 ltrneq2 40257 tendoeq1 40873 sticksstones1 42249 pw2f1ocnv 43140 caofcan 44426 addrcom 44577 fsneq 45313 dvnprodlem1 46054 cfsetsnfsetf1 47169 cfsetsnfsetfo 47170 rrx2pnecoorneor 48826 rrx2linest 48853 dfinito4 49612 |
| Copyright terms: Public domain | W3C validator |