| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnfv | Structured version Visualization version GIF version | ||
| Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| eqfnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 6922 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 2 | dffn5 6922 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
| 3 | eqeq12 2747 | . . 3 ⊢ ((𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ∧ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) | |
| 4 | 1, 2, 3 | syl2anb 598 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)))) |
| 5 | fvex 6874 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 6 | 5 | rgenw 3049 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
| 7 | mpteqb 6990 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 9 | 4, 8 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ↦ cmpt 5191 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: eqfnfv2 7007 eqfnfvd 7009 eqfnfv2f 7010 eqfnun 7012 fvreseq0 7013 fnmptfvd 7016 fndmdifeq0 7019 fneqeql 7021 fnnfpeq0 7155 fprb 7171 fconst2g 7180 cocan1 7269 cocan2 7270 weniso 7332 fsplitfpar 8100 fnsuppres 8173 tfr3 8370 ixpfi2 9308 fipreima 9316 updjud 9894 fseqenlem1 9984 fpwwe2lem7 10597 ofsubeq0 12190 ser0f 14027 hashgval2 14350 hashf1lem1 14427 prodf1f 15865 efcvgfsum 16059 prmreclem2 16895 1arithlem4 16904 1arith 16905 smndex1n0mnd 18846 isgrpinv 18932 dprdf11 19962 frlmplusgvalb 21685 frlmvscavalb 21686 islindf4 21754 psrbagconf1o 21845 pthaus 23532 xkohaus 23547 cnmpt11 23557 cnmpt21 23565 prdsxmetlem 24263 rrxmet 25315 rolle 25901 tdeglem4 25972 resinf1o 26452 dchrelbas2 27155 dchreq 27176 eqeefv 28837 axlowdimlem14 28889 elntg2 28919 nmlno0lem 30729 phoeqi 30793 occllem 31239 dfiop2 31689 hoeq 31696 ho01i 31764 hoeq1 31766 kbpj 31892 nmlnop0iALT 31931 lnopco0i 31940 nlelchi 31997 rnbra 32043 kbass5 32056 hmopidmchi 32087 hmopidmpji 32088 pjssdif2i 32110 pjinvari 32127 bnj1542 34854 bnj580 34910 subfacp1lem3 35176 subfacp1lem5 35178 mrsubff1 35508 msubff1 35550 faclimlem1 35737 rdgprc 35789 broucube 37655 cocanfo 37720 sdclem2 37743 rrnmet 37830 rrnequiv 37836 ltrnid 40136 ltrneq2 40149 tendoeq1 40765 sticksstones1 42141 pw2f1ocnv 43033 caofcan 44319 addrcom 44471 fsneq 45207 dvnprodlem1 45951 cfsetsnfsetf1 47064 cfsetsnfsetfo 47065 rrx2pnecoorneor 48708 rrx2linest 48735 dfinito4 49494 |
| Copyright terms: Public domain | W3C validator |