MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvproj Structured version   Visualization version   GIF version

Theorem fvproj 8175
Description: Value of a function on ordered pairs with values expressed as ordered pairs. Note that 𝐹 and 𝐺 are the projections of 𝐻 to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019.)
Hypotheses
Ref Expression
fvproj.h 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
fvproj.x (𝜑𝑋𝐴)
fvproj.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fvproj (𝜑 → (𝐻‘⟨𝑋, 𝑌⟩) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem fvproj
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7451 . 2 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
2 fvproj.x . . 3 (𝜑𝑋𝐴)
3 fvproj.y . . 3 (𝜑𝑌𝐵)
4 fveq2 6920 . . . . 5 (𝑎 = 𝑋 → (𝐹𝑎) = (𝐹𝑋))
54opeq1d 4903 . . . 4 (𝑎 = 𝑋 → ⟨(𝐹𝑎), (𝐺𝑏)⟩ = ⟨(𝐹𝑋), (𝐺𝑏)⟩)
6 fveq2 6920 . . . . 5 (𝑏 = 𝑌 → (𝐺𝑏) = (𝐺𝑌))
76opeq2d 4904 . . . 4 (𝑏 = 𝑌 → ⟨(𝐹𝑋), (𝐺𝑏)⟩ = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
8 fvproj.h . . . . 5 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
9 fveq2 6920 . . . . . . 7 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
109opeq1d 4903 . . . . . 6 (𝑥 = 𝑎 → ⟨(𝐹𝑥), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑦)⟩)
11 fveq2 6920 . . . . . . 7 (𝑦 = 𝑏 → (𝐺𝑦) = (𝐺𝑏))
1211opeq2d 4904 . . . . . 6 (𝑦 = 𝑏 → ⟨(𝐹𝑎), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑏)⟩)
1310, 12cbvmpov 7545 . . . . 5 (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) = (𝑎𝐴, 𝑏𝐵 ↦ ⟨(𝐹𝑎), (𝐺𝑏)⟩)
148, 13eqtri 2768 . . . 4 𝐻 = (𝑎𝐴, 𝑏𝐵 ↦ ⟨(𝐹𝑎), (𝐺𝑏)⟩)
15 opex 5484 . . . 4 ⟨(𝐹𝑋), (𝐺𝑌)⟩ ∈ V
165, 7, 14, 15ovmpo 7610 . . 3 ((𝑋𝐴𝑌𝐵) → (𝑋𝐻𝑌) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
172, 3, 16syl2anc 583 . 2 (𝜑 → (𝑋𝐻𝑌) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
181, 17eqtr3id 2794 1 (𝜑 → (𝐻‘⟨𝑋, 𝑌⟩) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cop 4654  cfv 6573  (class class class)co 7448  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  fimaproj  8176  ex-fpar  30494  qtophaus  33782
  Copyright terms: Public domain W3C validator