![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvproj | Structured version Visualization version GIF version |
Description: Value of a function on ordered pairs with values expressed as ordered pairs. Note that 𝐹 and 𝐺 are the projections of 𝐻 to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019.) |
Ref | Expression |
---|---|
fvproj.h | ⊢ 𝐻 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) |
fvproj.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
fvproj.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
fvproj | ⊢ (𝜑 → (𝐻‘〈𝑋, 𝑌〉) = 〈(𝐹‘𝑋), (𝐺‘𝑌)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7417 | . 2 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
2 | fvproj.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
3 | fvproj.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | fveq2 6891 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝐹‘𝑎) = (𝐹‘𝑋)) | |
5 | 4 | opeq1d 4875 | . . . 4 ⊢ (𝑎 = 𝑋 → 〈(𝐹‘𝑎), (𝐺‘𝑏)〉 = 〈(𝐹‘𝑋), (𝐺‘𝑏)〉) |
6 | fveq2 6891 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝐺‘𝑏) = (𝐺‘𝑌)) | |
7 | 6 | opeq2d 4876 | . . . 4 ⊢ (𝑏 = 𝑌 → 〈(𝐹‘𝑋), (𝐺‘𝑏)〉 = 〈(𝐹‘𝑋), (𝐺‘𝑌)〉) |
8 | fvproj.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) | |
9 | fveq2 6891 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) | |
10 | 9 | opeq1d 4875 | . . . . . 6 ⊢ (𝑥 = 𝑎 → 〈(𝐹‘𝑥), (𝐺‘𝑦)〉 = 〈(𝐹‘𝑎), (𝐺‘𝑦)〉) |
11 | fveq2 6891 | . . . . . . 7 ⊢ (𝑦 = 𝑏 → (𝐺‘𝑦) = (𝐺‘𝑏)) | |
12 | 11 | opeq2d 4876 | . . . . . 6 ⊢ (𝑦 = 𝑏 → 〈(𝐹‘𝑎), (𝐺‘𝑦)〉 = 〈(𝐹‘𝑎), (𝐺‘𝑏)〉) |
13 | 10, 12 | cbvmpov 7509 | . . . . 5 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 〈(𝐹‘𝑎), (𝐺‘𝑏)〉) |
14 | 8, 13 | eqtri 2755 | . . . 4 ⊢ 𝐻 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 〈(𝐹‘𝑎), (𝐺‘𝑏)〉) |
15 | opex 5460 | . . . 4 ⊢ 〈(𝐹‘𝑋), (𝐺‘𝑌)〉 ∈ V | |
16 | 5, 7, 14, 15 | ovmpo 7573 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐻𝑌) = 〈(𝐹‘𝑋), (𝐺‘𝑌)〉) |
17 | 2, 3, 16 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑌) = 〈(𝐹‘𝑋), (𝐺‘𝑌)〉) |
18 | 1, 17 | eqtr3id 2781 | 1 ⊢ (𝜑 → (𝐻‘〈𝑋, 𝑌〉) = 〈(𝐹‘𝑋), (𝐺‘𝑌)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 〈cop 4630 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 |
This theorem is referenced by: fimaproj 8132 ex-fpar 30246 qtophaus 33360 |
Copyright terms: Public domain | W3C validator |