MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvproj Structured version   Visualization version   GIF version

Theorem fvproj 8125
Description: Value of a function on ordered pairs with values expressed as ordered pairs. Note that 𝐹 and 𝐺 are the projections of 𝐻 to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019.)
Hypotheses
Ref Expression
fvproj.h 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
fvproj.x (𝜑𝑋𝐴)
fvproj.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fvproj (𝜑 → (𝐻‘⟨𝑋, 𝑌⟩) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem fvproj
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7415 . 2 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
2 fvproj.x . . 3 (𝜑𝑋𝐴)
3 fvproj.y . . 3 (𝜑𝑌𝐵)
4 fveq2 6891 . . . . 5 (𝑎 = 𝑋 → (𝐹𝑎) = (𝐹𝑋))
54opeq1d 4879 . . . 4 (𝑎 = 𝑋 → ⟨(𝐹𝑎), (𝐺𝑏)⟩ = ⟨(𝐹𝑋), (𝐺𝑏)⟩)
6 fveq2 6891 . . . . 5 (𝑏 = 𝑌 → (𝐺𝑏) = (𝐺𝑌))
76opeq2d 4880 . . . 4 (𝑏 = 𝑌 → ⟨(𝐹𝑋), (𝐺𝑏)⟩ = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
8 fvproj.h . . . . 5 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
9 fveq2 6891 . . . . . . 7 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
109opeq1d 4879 . . . . . 6 (𝑥 = 𝑎 → ⟨(𝐹𝑥), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑦)⟩)
11 fveq2 6891 . . . . . . 7 (𝑦 = 𝑏 → (𝐺𝑦) = (𝐺𝑏))
1211opeq2d 4880 . . . . . 6 (𝑦 = 𝑏 → ⟨(𝐹𝑎), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑏)⟩)
1310, 12cbvmpov 7507 . . . . 5 (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) = (𝑎𝐴, 𝑏𝐵 ↦ ⟨(𝐹𝑎), (𝐺𝑏)⟩)
148, 13eqtri 2759 . . . 4 𝐻 = (𝑎𝐴, 𝑏𝐵 ↦ ⟨(𝐹𝑎), (𝐺𝑏)⟩)
15 opex 5464 . . . 4 ⟨(𝐹𝑋), (𝐺𝑌)⟩ ∈ V
165, 7, 14, 15ovmpo 7571 . . 3 ((𝑋𝐴𝑌𝐵) → (𝑋𝐻𝑌) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
172, 3, 16syl2anc 583 . 2 (𝜑 → (𝑋𝐻𝑌) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
181, 17eqtr3id 2785 1 (𝜑 → (𝐻‘⟨𝑋, 𝑌⟩) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cop 4634  cfv 6543  (class class class)co 7412  cmpo 7414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417
This theorem is referenced by:  fimaproj  8126  ex-fpar  30148  qtophaus  33280
  Copyright terms: Public domain W3C validator