| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvproj | Structured version Visualization version GIF version | ||
| Description: Value of a function on ordered pairs with values expressed as ordered pairs. Note that 𝐹 and 𝐺 are the projections of 𝐻 to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019.) |
| Ref | Expression |
|---|---|
| fvproj.h | ⊢ 𝐻 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) |
| fvproj.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| fvproj.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fvproj | ⊢ (𝜑 → (𝐻‘〈𝑋, 𝑌〉) = 〈(𝐹‘𝑋), (𝐺‘𝑌)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7358 | . 2 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
| 2 | fvproj.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 3 | fvproj.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | fveq2 6831 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝐹‘𝑎) = (𝐹‘𝑋)) | |
| 5 | 4 | opeq1d 4832 | . . . 4 ⊢ (𝑎 = 𝑋 → 〈(𝐹‘𝑎), (𝐺‘𝑏)〉 = 〈(𝐹‘𝑋), (𝐺‘𝑏)〉) |
| 6 | fveq2 6831 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝐺‘𝑏) = (𝐺‘𝑌)) | |
| 7 | 6 | opeq2d 4833 | . . . 4 ⊢ (𝑏 = 𝑌 → 〈(𝐹‘𝑋), (𝐺‘𝑏)〉 = 〈(𝐹‘𝑋), (𝐺‘𝑌)〉) |
| 8 | fvproj.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) | |
| 9 | fveq2 6831 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) | |
| 10 | 9 | opeq1d 4832 | . . . . . 6 ⊢ (𝑥 = 𝑎 → 〈(𝐹‘𝑥), (𝐺‘𝑦)〉 = 〈(𝐹‘𝑎), (𝐺‘𝑦)〉) |
| 11 | fveq2 6831 | . . . . . . 7 ⊢ (𝑦 = 𝑏 → (𝐺‘𝑦) = (𝐺‘𝑏)) | |
| 12 | 11 | opeq2d 4833 | . . . . . 6 ⊢ (𝑦 = 𝑏 → 〈(𝐹‘𝑎), (𝐺‘𝑦)〉 = 〈(𝐹‘𝑎), (𝐺‘𝑏)〉) |
| 13 | 10, 12 | cbvmpov 7450 | . . . . 5 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 〈(𝐹‘𝑎), (𝐺‘𝑏)〉) |
| 14 | 8, 13 | eqtri 2756 | . . . 4 ⊢ 𝐻 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 〈(𝐹‘𝑎), (𝐺‘𝑏)〉) |
| 15 | opex 5409 | . . . 4 ⊢ 〈(𝐹‘𝑋), (𝐺‘𝑌)〉 ∈ V | |
| 16 | 5, 7, 14, 15 | ovmpo 7515 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐻𝑌) = 〈(𝐹‘𝑋), (𝐺‘𝑌)〉) |
| 17 | 2, 3, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑌) = 〈(𝐹‘𝑋), (𝐺‘𝑌)〉) |
| 18 | 1, 17 | eqtr3id 2782 | 1 ⊢ (𝜑 → (𝐻‘〈𝑋, 𝑌〉) = 〈(𝐹‘𝑋), (𝐺‘𝑌)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 〈cop 4583 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 |
| This theorem is referenced by: fimaproj 8074 ex-fpar 30463 qtophaus 33921 |
| Copyright terms: Public domain | W3C validator |