![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvproj | Structured version Visualization version GIF version |
Description: Value of a function on ordered pairs with values expressed as ordered pairs. Note that 𝐹 and 𝐺 are the projections of 𝐻 to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019.) |
Ref | Expression |
---|---|
fvproj.h | ⊢ 𝐻 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ⟨(𝐹‘𝑥), (𝐺‘𝑦)⟩) |
fvproj.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
fvproj.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
fvproj | ⊢ (𝜑 → (𝐻‘⟨𝑋, 𝑌⟩) = ⟨(𝐹‘𝑋), (𝐺‘𝑌)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7415 | . 2 ⊢ (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩) | |
2 | fvproj.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
3 | fvproj.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | fveq2 6891 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝐹‘𝑎) = (𝐹‘𝑋)) | |
5 | 4 | opeq1d 4879 | . . . 4 ⊢ (𝑎 = 𝑋 → ⟨(𝐹‘𝑎), (𝐺‘𝑏)⟩ = ⟨(𝐹‘𝑋), (𝐺‘𝑏)⟩) |
6 | fveq2 6891 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝐺‘𝑏) = (𝐺‘𝑌)) | |
7 | 6 | opeq2d 4880 | . . . 4 ⊢ (𝑏 = 𝑌 → ⟨(𝐹‘𝑋), (𝐺‘𝑏)⟩ = ⟨(𝐹‘𝑋), (𝐺‘𝑌)⟩) |
8 | fvproj.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ⟨(𝐹‘𝑥), (𝐺‘𝑦)⟩) | |
9 | fveq2 6891 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) | |
10 | 9 | opeq1d 4879 | . . . . . 6 ⊢ (𝑥 = 𝑎 → ⟨(𝐹‘𝑥), (𝐺‘𝑦)⟩ = ⟨(𝐹‘𝑎), (𝐺‘𝑦)⟩) |
11 | fveq2 6891 | . . . . . . 7 ⊢ (𝑦 = 𝑏 → (𝐺‘𝑦) = (𝐺‘𝑏)) | |
12 | 11 | opeq2d 4880 | . . . . . 6 ⊢ (𝑦 = 𝑏 → ⟨(𝐹‘𝑎), (𝐺‘𝑦)⟩ = ⟨(𝐹‘𝑎), (𝐺‘𝑏)⟩) |
13 | 10, 12 | cbvmpov 7507 | . . . . 5 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ⟨(𝐹‘𝑥), (𝐺‘𝑦)⟩) = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ ⟨(𝐹‘𝑎), (𝐺‘𝑏)⟩) |
14 | 8, 13 | eqtri 2759 | . . . 4 ⊢ 𝐻 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ ⟨(𝐹‘𝑎), (𝐺‘𝑏)⟩) |
15 | opex 5464 | . . . 4 ⊢ ⟨(𝐹‘𝑋), (𝐺‘𝑌)⟩ ∈ V | |
16 | 5, 7, 14, 15 | ovmpo 7571 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐻𝑌) = ⟨(𝐹‘𝑋), (𝐺‘𝑌)⟩) |
17 | 2, 3, 16 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑌) = ⟨(𝐹‘𝑋), (𝐺‘𝑌)⟩) |
18 | 1, 17 | eqtr3id 2785 | 1 ⊢ (𝜑 → (𝐻‘⟨𝑋, 𝑌⟩) = ⟨(𝐹‘𝑋), (𝐺‘𝑌)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ⟨cop 4634 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 |
This theorem is referenced by: fimaproj 8126 ex-fpar 30148 qtophaus 33280 |
Copyright terms: Public domain | W3C validator |