MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvproj Structured version   Visualization version   GIF version

Theorem fvproj 8131
Description: Value of a function on ordered pairs with values expressed as ordered pairs. Note that 𝐹 and 𝐺 are the projections of 𝐻 to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019.)
Hypotheses
Ref Expression
fvproj.h 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
fvproj.x (𝜑𝑋𝐴)
fvproj.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fvproj (𝜑 → (𝐻‘⟨𝑋, 𝑌⟩) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem fvproj
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7417 . 2 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
2 fvproj.x . . 3 (𝜑𝑋𝐴)
3 fvproj.y . . 3 (𝜑𝑌𝐵)
4 fveq2 6891 . . . . 5 (𝑎 = 𝑋 → (𝐹𝑎) = (𝐹𝑋))
54opeq1d 4875 . . . 4 (𝑎 = 𝑋 → ⟨(𝐹𝑎), (𝐺𝑏)⟩ = ⟨(𝐹𝑋), (𝐺𝑏)⟩)
6 fveq2 6891 . . . . 5 (𝑏 = 𝑌 → (𝐺𝑏) = (𝐺𝑌))
76opeq2d 4876 . . . 4 (𝑏 = 𝑌 → ⟨(𝐹𝑋), (𝐺𝑏)⟩ = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
8 fvproj.h . . . . 5 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
9 fveq2 6891 . . . . . . 7 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
109opeq1d 4875 . . . . . 6 (𝑥 = 𝑎 → ⟨(𝐹𝑥), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑦)⟩)
11 fveq2 6891 . . . . . . 7 (𝑦 = 𝑏 → (𝐺𝑦) = (𝐺𝑏))
1211opeq2d 4876 . . . . . 6 (𝑦 = 𝑏 → ⟨(𝐹𝑎), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑏)⟩)
1310, 12cbvmpov 7509 . . . . 5 (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) = (𝑎𝐴, 𝑏𝐵 ↦ ⟨(𝐹𝑎), (𝐺𝑏)⟩)
148, 13eqtri 2755 . . . 4 𝐻 = (𝑎𝐴, 𝑏𝐵 ↦ ⟨(𝐹𝑎), (𝐺𝑏)⟩)
15 opex 5460 . . . 4 ⟨(𝐹𝑋), (𝐺𝑌)⟩ ∈ V
165, 7, 14, 15ovmpo 7573 . . 3 ((𝑋𝐴𝑌𝐵) → (𝑋𝐻𝑌) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
172, 3, 16syl2anc 583 . 2 (𝜑 → (𝑋𝐻𝑌) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
181, 17eqtr3id 2781 1 (𝜑 → (𝐻‘⟨𝑋, 𝑌⟩) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cop 4630  cfv 6542  (class class class)co 7414  cmpo 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419
This theorem is referenced by:  fimaproj  8132  ex-fpar  30246  qtophaus  33360
  Copyright terms: Public domain W3C validator