| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvun1d | Structured version Visualization version GIF version | ||
| Description: The value of a union when the argument is in the first domain, a deduction version. (Contributed by metakunt, 28-May-2024.) |
| Ref | Expression |
|---|---|
| fvun1d.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fvun1d.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| fvun1d.3 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| fvun1d.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fvun1d | ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvun1d.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fvun1d.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | fvun1d.3 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 4 | fvun1d.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 5 | 3, 4 | jca 511 | . . 3 ⊢ (𝜑 → ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) |
| 6 | 1, 2, 5 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴))) |
| 7 | fvun1 6955 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ∩ cin 3916 ∅c0 4299 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: hashf1lem1 14427 elrspunidl 33406 ofun 42231 tfsconcatfv1 43335 |
| Copyright terms: Public domain | W3C validator |