MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun1d Structured version   Visualization version   GIF version

Theorem fvun1d 6900
Description: The value of a union when the argument is in the first domain, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
fvun1d.1 (𝜑𝐹 Fn 𝐴)
fvun1d.2 (𝜑𝐺 Fn 𝐵)
fvun1d.3 (𝜑 → (𝐴𝐵) = ∅)
fvun1d.4 (𝜑𝑋𝐴)
Assertion
Ref Expression
fvun1d (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))

Proof of Theorem fvun1d
StepHypRef Expression
1 fvun1d.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 fvun1d.2 . . 3 (𝜑𝐺 Fn 𝐵)
3 fvun1d.3 . . . 4 (𝜑 → (𝐴𝐵) = ∅)
4 fvun1d.4 . . . 4 (𝜑𝑋𝐴)
53, 4jca 512 . . 3 (𝜑 → ((𝐴𝐵) = ∅ ∧ 𝑋𝐴))
61, 2, 53jca 1127 . 2 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)))
7 fvun1 6898 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
86, 7syl 17 1 (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  cun 3895  cin 3896  c0 4267   Fn wfn 6460  cfv 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-fv 6473
This theorem is referenced by:  hashf1lem1  14240  hashf1lem1OLD  14241  elrspunidl  31711  metakunt21  40353  metakunt22  40354  ofun  40414
  Copyright terms: Public domain W3C validator