Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvun1d | Structured version Visualization version GIF version |
Description: The value of a union when the argument is in the first domain, a deduction version. (Contributed by metakunt, 28-May-2024.) |
Ref | Expression |
---|---|
fvun1d.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fvun1d.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
fvun1d.3 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
fvun1d.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
fvun1d | ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvun1d.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fvun1d.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | fvun1d.3 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
4 | fvun1d.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
5 | 3, 4 | jca 512 | . . 3 ⊢ (𝜑 → ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) |
6 | 1, 2, 5 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴))) |
7 | fvun1 6898 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) | |
8 | 6, 7 | syl 17 | 1 ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∪ cun 3895 ∩ cin 3896 ∅c0 4267 Fn wfn 6460 ‘cfv 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-fv 6473 |
This theorem is referenced by: hashf1lem1 14240 hashf1lem1OLD 14241 elrspunidl 31711 metakunt21 40353 metakunt22 40354 ofun 40414 |
Copyright terms: Public domain | W3C validator |