MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun1d Structured version   Visualization version   GIF version

Theorem fvun1d 7002
Description: The value of a union when the argument is in the first domain, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
fvun1d.1 (𝜑𝐹 Fn 𝐴)
fvun1d.2 (𝜑𝐺 Fn 𝐵)
fvun1d.3 (𝜑 → (𝐴𝐵) = ∅)
fvun1d.4 (𝜑𝑋𝐴)
Assertion
Ref Expression
fvun1d (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))

Proof of Theorem fvun1d
StepHypRef Expression
1 fvun1d.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 fvun1d.2 . . 3 (𝜑𝐺 Fn 𝐵)
3 fvun1d.3 . . . 4 (𝜑 → (𝐴𝐵) = ∅)
4 fvun1d.4 . . . 4 (𝜑𝑋𝐴)
53, 4jca 511 . . 3 (𝜑 → ((𝐴𝐵) = ∅ ∧ 𝑋𝐴))
61, 2, 53jca 1129 . 2 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)))
7 fvun1 7000 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
86, 7syl 17 1 (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cun 3949  cin 3950  c0 4333   Fn wfn 6556  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569
This theorem is referenced by:  hashf1lem1  14494  elrspunidl  33456  metakunt21  42226  metakunt22  42227  ofun  42277  tfsconcatfv1  43352
  Copyright terms: Public domain W3C validator