| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvun1d | Structured version Visualization version GIF version | ||
| Description: The value of a union when the argument is in the first domain, a deduction version. (Contributed by metakunt, 28-May-2024.) |
| Ref | Expression |
|---|---|
| fvun1d.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fvun1d.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| fvun1d.3 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| fvun1d.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fvun1d | ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvun1d.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fvun1d.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | fvun1d.3 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 4 | fvun1d.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 5 | 3, 4 | jca 511 | . . 3 ⊢ (𝜑 → ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) |
| 6 | 1, 2, 5 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴))) |
| 7 | fvun1 6922 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∪ cun 3897 ∩ cin 3898 ∅c0 4284 Fn wfn 6484 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-fv 6497 |
| This theorem is referenced by: hashf1lem1 14372 elrspunidl 33404 ofun 42344 tfsconcatfv1 43446 |
| Copyright terms: Public domain | W3C validator |