Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt22 Structured version   Visualization version   GIF version

Theorem metakunt22 40644
Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt22.1 (𝜑𝑀 ∈ ℕ)
metakunt22.2 (𝜑𝐼 ∈ ℕ)
metakunt22.3 (𝜑𝐼𝑀)
metakunt22.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
metakunt22.5 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
metakunt22.6 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
metakunt22.7 (𝜑𝑋 ∈ (1...𝑀))
metakunt22.8 (𝜑 → ¬ 𝑋 = 𝑀)
metakunt22.9 (𝜑 → ¬ 𝑋 < 𝐼)
Assertion
Ref Expression
metakunt22 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem metakunt22
StepHypRef Expression
1 metakunt22.4 . . . 4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
21a1i 11 . . 3 (𝜑𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))))))
3 eqeq1 2737 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝑀𝑋 = 𝑀))
4 breq1 5109 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 oveq1 7365 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
6 oveq1 7365 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
74, 5, 6ifbieq12d 4515 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
83, 7ifbieq2d 4513 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
98adantl 483 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
10 metakunt22.8 . . . . . . 7 (𝜑 → ¬ 𝑋 = 𝑀)
11 iffalse 4496 . . . . . . 7 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
1210, 11syl 17 . . . . . 6 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
13 metakunt22.9 . . . . . . 7 (𝜑 → ¬ 𝑋 < 𝐼)
14 iffalse 4496 . . . . . . 7 𝑋 < 𝐼 → if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))) = (𝑋 + (1 − 𝐼)))
1513, 14syl 17 . . . . . 6 (𝜑 → if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))) = (𝑋 + (1 − 𝐼)))
1612, 15eqtrd 2773 . . . . 5 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = (𝑋 + (1 − 𝐼)))
1716adantr 482 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = (𝑋 + (1 − 𝐼)))
189, 17eqtrd 2773 . . 3 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = (𝑋 + (1 − 𝐼)))
19 metakunt22.7 . . 3 (𝜑𝑋 ∈ (1...𝑀))
2019elfzelzd 13448 . . . 4 (𝜑𝑋 ∈ ℤ)
21 1zzd 12539 . . . . 5 (𝜑 → 1 ∈ ℤ)
22 metakunt22.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
2322nnzd 12531 . . . . 5 (𝜑𝐼 ∈ ℤ)
2421, 23zsubcld 12617 . . . 4 (𝜑 → (1 − 𝐼) ∈ ℤ)
2520, 24zaddcld 12616 . . 3 (𝜑 → (𝑋 + (1 − 𝐼)) ∈ ℤ)
262, 18, 19, 25fvmptd 6956 . 2 (𝜑 → (𝐵𝑋) = (𝑋 + (1 − 𝐼)))
27 metakunt22.1 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
28 metakunt22.3 . . . . . . . 8 (𝜑𝐼𝑀)
29 metakunt22.5 . . . . . . . 8 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
30 metakunt22.6 . . . . . . . 8 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
3127, 22, 28, 1, 29, 30metakunt19 40641 . . . . . . 7 (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
3231simpld 496 . . . . . 6 (𝜑 → (𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
3332simp3d 1145 . . . . 5 (𝜑 → (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
3431simprd 497 . . . . 5 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
35 indir 4236 . . . . . . 7 (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀}))
3635a1i 11 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})))
3727, 22, 28metakunt18 40640 . . . . . . . . . 10 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
3837simpld 496 . . . . . . . . 9 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
3938simp2d 1144 . . . . . . . 8 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
4038simp3d 1145 . . . . . . . 8 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
4139, 40uneq12d 4125 . . . . . . 7 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = (∅ ∪ ∅))
42 unidm 4113 . . . . . . . 8 (∅ ∪ ∅) = ∅
4342a1i 11 . . . . . . 7 (𝜑 → (∅ ∪ ∅) = ∅)
4441, 43eqtrd 2773 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = ∅)
4536, 44eqtrd 2773 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
4627nnzd 12531 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
4746, 21zsubcld 12617 . . . . . . 7 (𝜑 → (𝑀 − 1) ∈ ℤ)
4822nnred 12173 . . . . . . . . 9 (𝜑𝐼 ∈ ℝ)
49 elfznn 13476 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
5019, 49syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℕ)
5150nnred 12173 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
5248, 51lenltd 11306 . . . . . . . 8 (𝜑 → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
5313, 52mpbird 257 . . . . . . 7 (𝜑𝐼𝑋)
54 elfzle2 13451 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
5519, 54syl 17 . . . . . . . . . 10 (𝜑𝑋𝑀)
56 df-ne 2941 . . . . . . . . . . . 12 (𝑋𝑀 ↔ ¬ 𝑋 = 𝑀)
5710, 56sylibr 233 . . . . . . . . . . 11 (𝜑𝑋𝑀)
5857necomd 2996 . . . . . . . . . 10 (𝜑𝑀𝑋)
5955, 58jca 513 . . . . . . . . 9 (𝜑 → (𝑋𝑀𝑀𝑋))
6027nnred 12173 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
6151, 60ltlend 11305 . . . . . . . . 9 (𝜑 → (𝑋 < 𝑀 ↔ (𝑋𝑀𝑀𝑋)))
6259, 61mpbird 257 . . . . . . . 8 (𝜑𝑋 < 𝑀)
63 zltlem1 12561 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑋 < 𝑀𝑋 ≤ (𝑀 − 1)))
6420, 46, 63syl2anc 585 . . . . . . . 8 (𝜑 → (𝑋 < 𝑀𝑋 ≤ (𝑀 − 1)))
6562, 64mpbid 231 . . . . . . 7 (𝜑𝑋 ≤ (𝑀 − 1))
6623, 47, 20, 53, 65elfzd 13438 . . . . . 6 (𝜑𝑋 ∈ (𝐼...(𝑀 − 1)))
67 elun2 4138 . . . . . 6 (𝑋 ∈ (𝐼...(𝑀 − 1)) → 𝑋 ∈ ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6866, 67syl 17 . . . . 5 (𝜑𝑋 ∈ ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6933, 34, 45, 68fvun1d 6935 . . . 4 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = ((𝐶𝐷)‘𝑋))
7032simp1d 1143 . . . . . 6 (𝜑𝐶 Fn (1...(𝐼 − 1)))
7132simp2d 1144 . . . . . 6 (𝜑𝐷 Fn (𝐼...(𝑀 − 1)))
7238simp1d 1143 . . . . . 6 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
7370, 71, 72, 66fvun2d 6936 . . . . 5 (𝜑 → ((𝐶𝐷)‘𝑋) = (𝐷𝑋))
7430a1i 11 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))))
75 simpr 486 . . . . . . 7 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
7675oveq1d 7373 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
7720zred 12612 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
78 lenlt 11238 . . . . . . . . 9 ((𝐼 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
7948, 77, 78syl2anc 585 . . . . . . . 8 (𝜑 → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
8013, 79mpbird 257 . . . . . . 7 (𝜑𝐼𝑋)
8177, 60ltlend 11305 . . . . . . . . 9 (𝜑 → (𝑋 < 𝑀 ↔ (𝑋𝑀𝑀𝑋)))
8259, 81mpbird 257 . . . . . . . 8 (𝜑𝑋 < 𝑀)
8382, 64mpbid 231 . . . . . . 7 (𝜑𝑋 ≤ (𝑀 − 1))
8423, 47, 20, 80, 83elfzd 13438 . . . . . 6 (𝜑𝑋 ∈ (𝐼...(𝑀 − 1)))
8574, 76, 84, 25fvmptd 6956 . . . . 5 (𝜑 → (𝐷𝑋) = (𝑋 + (1 − 𝐼)))
8673, 85eqtrd 2773 . . . 4 (𝜑 → ((𝐶𝐷)‘𝑋) = (𝑋 + (1 − 𝐼)))
8769, 86eqtrd 2773 . . 3 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = (𝑋 + (1 − 𝐼)))
8887eqcomd 2739 . 2 (𝜑 → (𝑋 + (1 − 𝐼)) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
8926, 88eqtrd 2773 1 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2940  cun 3909  cin 3910  c0 4283  ifcif 4487  {csn 4587  cop 4593   class class class wbr 5106  cmpt 5189   Fn wfn 6492  cfv 6497  (class class class)co 7358  cr 11055  1c1 11057   + caddc 11059   < clt 11194  cle 11195  cmin 11390  cn 12158  cz 12504  ...cfz 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-rp 12921  df-fz 13431
This theorem is referenced by:  metakunt23  40645
  Copyright terms: Public domain W3C validator