Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt22 Structured version   Visualization version   GIF version

Theorem metakunt22 42208
Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt22.1 (𝜑𝑀 ∈ ℕ)
metakunt22.2 (𝜑𝐼 ∈ ℕ)
metakunt22.3 (𝜑𝐼𝑀)
metakunt22.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
metakunt22.5 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
metakunt22.6 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
metakunt22.7 (𝜑𝑋 ∈ (1...𝑀))
metakunt22.8 (𝜑 → ¬ 𝑋 = 𝑀)
metakunt22.9 (𝜑 → ¬ 𝑋 < 𝐼)
Assertion
Ref Expression
metakunt22 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem metakunt22
StepHypRef Expression
1 metakunt22.4 . . . 4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
21a1i 11 . . 3 (𝜑𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))))))
3 eqeq1 2739 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝑀𝑋 = 𝑀))
4 breq1 5151 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 oveq1 7438 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
6 oveq1 7438 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
74, 5, 6ifbieq12d 4559 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
83, 7ifbieq2d 4557 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
98adantl 481 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
10 metakunt22.8 . . . . . . 7 (𝜑 → ¬ 𝑋 = 𝑀)
11 iffalse 4540 . . . . . . 7 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
1210, 11syl 17 . . . . . 6 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
13 metakunt22.9 . . . . . . 7 (𝜑 → ¬ 𝑋 < 𝐼)
14 iffalse 4540 . . . . . . 7 𝑋 < 𝐼 → if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))) = (𝑋 + (1 − 𝐼)))
1513, 14syl 17 . . . . . 6 (𝜑 → if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))) = (𝑋 + (1 − 𝐼)))
1612, 15eqtrd 2775 . . . . 5 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = (𝑋 + (1 − 𝐼)))
1716adantr 480 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = (𝑋 + (1 − 𝐼)))
189, 17eqtrd 2775 . . 3 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = (𝑋 + (1 − 𝐼)))
19 metakunt22.7 . . 3 (𝜑𝑋 ∈ (1...𝑀))
2019elfzelzd 13562 . . . 4 (𝜑𝑋 ∈ ℤ)
21 1zzd 12646 . . . . 5 (𝜑 → 1 ∈ ℤ)
22 metakunt22.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
2322nnzd 12638 . . . . 5 (𝜑𝐼 ∈ ℤ)
2421, 23zsubcld 12725 . . . 4 (𝜑 → (1 − 𝐼) ∈ ℤ)
2520, 24zaddcld 12724 . . 3 (𝜑 → (𝑋 + (1 − 𝐼)) ∈ ℤ)
262, 18, 19, 25fvmptd 7023 . 2 (𝜑 → (𝐵𝑋) = (𝑋 + (1 − 𝐼)))
27 metakunt22.1 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
28 metakunt22.3 . . . . . . . 8 (𝜑𝐼𝑀)
29 metakunt22.5 . . . . . . . 8 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
30 metakunt22.6 . . . . . . . 8 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
3127, 22, 28, 1, 29, 30metakunt19 42205 . . . . . . 7 (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
3231simpld 494 . . . . . 6 (𝜑 → (𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
3332simp3d 1143 . . . . 5 (𝜑 → (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
3431simprd 495 . . . . 5 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
35 indir 4292 . . . . . . 7 (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀}))
3635a1i 11 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})))
3727, 22, 28metakunt18 42204 . . . . . . . . . 10 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
3837simpld 494 . . . . . . . . 9 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
3938simp2d 1142 . . . . . . . 8 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
4038simp3d 1143 . . . . . . . 8 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
4139, 40uneq12d 4179 . . . . . . 7 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = (∅ ∪ ∅))
42 unidm 4167 . . . . . . . 8 (∅ ∪ ∅) = ∅
4342a1i 11 . . . . . . 7 (𝜑 → (∅ ∪ ∅) = ∅)
4441, 43eqtrd 2775 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = ∅)
4536, 44eqtrd 2775 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
4627nnzd 12638 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
4746, 21zsubcld 12725 . . . . . . 7 (𝜑 → (𝑀 − 1) ∈ ℤ)
4822nnred 12279 . . . . . . . . 9 (𝜑𝐼 ∈ ℝ)
49 elfznn 13590 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
5019, 49syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℕ)
5150nnred 12279 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
5248, 51lenltd 11405 . . . . . . . 8 (𝜑 → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
5313, 52mpbird 257 . . . . . . 7 (𝜑𝐼𝑋)
54 elfzle2 13565 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
5519, 54syl 17 . . . . . . . . . 10 (𝜑𝑋𝑀)
56 df-ne 2939 . . . . . . . . . . . 12 (𝑋𝑀 ↔ ¬ 𝑋 = 𝑀)
5710, 56sylibr 234 . . . . . . . . . . 11 (𝜑𝑋𝑀)
5857necomd 2994 . . . . . . . . . 10 (𝜑𝑀𝑋)
5955, 58jca 511 . . . . . . . . 9 (𝜑 → (𝑋𝑀𝑀𝑋))
6027nnred 12279 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
6151, 60ltlend 11404 . . . . . . . . 9 (𝜑 → (𝑋 < 𝑀 ↔ (𝑋𝑀𝑀𝑋)))
6259, 61mpbird 257 . . . . . . . 8 (𝜑𝑋 < 𝑀)
63 zltlem1 12668 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑋 < 𝑀𝑋 ≤ (𝑀 − 1)))
6420, 46, 63syl2anc 584 . . . . . . . 8 (𝜑 → (𝑋 < 𝑀𝑋 ≤ (𝑀 − 1)))
6562, 64mpbid 232 . . . . . . 7 (𝜑𝑋 ≤ (𝑀 − 1))
6623, 47, 20, 53, 65elfzd 13552 . . . . . 6 (𝜑𝑋 ∈ (𝐼...(𝑀 − 1)))
67 elun2 4193 . . . . . 6 (𝑋 ∈ (𝐼...(𝑀 − 1)) → 𝑋 ∈ ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6866, 67syl 17 . . . . 5 (𝜑𝑋 ∈ ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6933, 34, 45, 68fvun1d 7002 . . . 4 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = ((𝐶𝐷)‘𝑋))
7032simp1d 1141 . . . . . 6 (𝜑𝐶 Fn (1...(𝐼 − 1)))
7132simp2d 1142 . . . . . 6 (𝜑𝐷 Fn (𝐼...(𝑀 − 1)))
7238simp1d 1141 . . . . . 6 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
7370, 71, 72, 66fvun2d 7003 . . . . 5 (𝜑 → ((𝐶𝐷)‘𝑋) = (𝐷𝑋))
7430a1i 11 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))))
75 simpr 484 . . . . . . 7 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
7675oveq1d 7446 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
7720zred 12720 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
78 lenlt 11337 . . . . . . . . 9 ((𝐼 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
7948, 77, 78syl2anc 584 . . . . . . . 8 (𝜑 → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
8013, 79mpbird 257 . . . . . . 7 (𝜑𝐼𝑋)
8177, 60ltlend 11404 . . . . . . . . 9 (𝜑 → (𝑋 < 𝑀 ↔ (𝑋𝑀𝑀𝑋)))
8259, 81mpbird 257 . . . . . . . 8 (𝜑𝑋 < 𝑀)
8382, 64mpbid 232 . . . . . . 7 (𝜑𝑋 ≤ (𝑀 − 1))
8423, 47, 20, 80, 83elfzd 13552 . . . . . 6 (𝜑𝑋 ∈ (𝐼...(𝑀 − 1)))
8574, 76, 84, 25fvmptd 7023 . . . . 5 (𝜑 → (𝐷𝑋) = (𝑋 + (1 − 𝐼)))
8673, 85eqtrd 2775 . . . 4 (𝜑 → ((𝐶𝐷)‘𝑋) = (𝑋 + (1 − 𝐼)))
8769, 86eqtrd 2775 . . 3 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = (𝑋 + (1 − 𝐼)))
8887eqcomd 2741 . 2 (𝜑 → (𝑋 + (1 − 𝐼)) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
8926, 88eqtrd 2775 1 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cun 3961  cin 3962  c0 4339  ifcif 4531  {csn 4631  cop 4637   class class class wbr 5148  cmpt 5231   Fn wfn 6558  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  cz 12611  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545
This theorem is referenced by:  metakunt23  42209
  Copyright terms: Public domain W3C validator