Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt22 Structured version   Visualization version   GIF version

Theorem metakunt22 39868
Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt22.1 (𝜑𝑀 ∈ ℕ)
metakunt22.2 (𝜑𝐼 ∈ ℕ)
metakunt22.3 (𝜑𝐼𝑀)
metakunt22.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
metakunt22.5 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
metakunt22.6 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
metakunt22.7 (𝜑𝑋 ∈ (1...𝑀))
metakunt22.8 (𝜑 → ¬ 𝑋 = 𝑀)
metakunt22.9 (𝜑 → ¬ 𝑋 < 𝐼)
Assertion
Ref Expression
metakunt22 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem metakunt22
StepHypRef Expression
1 metakunt22.4 . . . 4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
21a1i 11 . . 3 (𝜑𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))))))
3 eqeq1 2741 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝑀𝑋 = 𝑀))
4 breq1 5056 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 oveq1 7220 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
6 oveq1 7220 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
74, 5, 6ifbieq12d 4467 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
83, 7ifbieq2d 4465 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
98adantl 485 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
10 metakunt22.8 . . . . . . 7 (𝜑 → ¬ 𝑋 = 𝑀)
11 iffalse 4448 . . . . . . 7 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
1210, 11syl 17 . . . . . 6 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
13 metakunt22.9 . . . . . . 7 (𝜑 → ¬ 𝑋 < 𝐼)
14 iffalse 4448 . . . . . . 7 𝑋 < 𝐼 → if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))) = (𝑋 + (1 − 𝐼)))
1513, 14syl 17 . . . . . 6 (𝜑 → if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))) = (𝑋 + (1 − 𝐼)))
1612, 15eqtrd 2777 . . . . 5 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = (𝑋 + (1 − 𝐼)))
1716adantr 484 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = (𝑋 + (1 − 𝐼)))
189, 17eqtrd 2777 . . 3 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = (𝑋 + (1 − 𝐼)))
19 metakunt22.7 . . 3 (𝜑𝑋 ∈ (1...𝑀))
2019elfzelzd 13113 . . . 4 (𝜑𝑋 ∈ ℤ)
21 1zzd 12208 . . . . 5 (𝜑 → 1 ∈ ℤ)
22 metakunt22.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
2322nnzd 12281 . . . . 5 (𝜑𝐼 ∈ ℤ)
2421, 23zsubcld 12287 . . . 4 (𝜑 → (1 − 𝐼) ∈ ℤ)
2520, 24zaddcld 12286 . . 3 (𝜑 → (𝑋 + (1 − 𝐼)) ∈ ℤ)
262, 18, 19, 25fvmptd 6825 . 2 (𝜑 → (𝐵𝑋) = (𝑋 + (1 − 𝐼)))
27 metakunt22.1 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
28 metakunt22.3 . . . . . . . 8 (𝜑𝐼𝑀)
29 metakunt22.5 . . . . . . . 8 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
30 metakunt22.6 . . . . . . . 8 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
3127, 22, 28, 1, 29, 30metakunt19 39865 . . . . . . 7 (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
3231simpld 498 . . . . . 6 (𝜑 → (𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
3332simp3d 1146 . . . . 5 (𝜑 → (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
3431simprd 499 . . . . 5 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
35 indir 4190 . . . . . . 7 (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀}))
3635a1i 11 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})))
3727, 22, 28metakunt18 39864 . . . . . . . . . 10 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
3837simpld 498 . . . . . . . . 9 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
3938simp2d 1145 . . . . . . . 8 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
4038simp3d 1146 . . . . . . . 8 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
4139, 40uneq12d 4078 . . . . . . 7 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = (∅ ∪ ∅))
42 unidm 4066 . . . . . . . 8 (∅ ∪ ∅) = ∅
4342a1i 11 . . . . . . 7 (𝜑 → (∅ ∪ ∅) = ∅)
4441, 43eqtrd 2777 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = ∅)
4536, 44eqtrd 2777 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
4627nnzd 12281 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
4746, 21zsubcld 12287 . . . . . . 7 (𝜑 → (𝑀 − 1) ∈ ℤ)
4822nnred 11845 . . . . . . . . 9 (𝜑𝐼 ∈ ℝ)
49 elfznn 13141 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
5019, 49syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℕ)
5150nnred 11845 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
5248, 51lenltd 10978 . . . . . . . 8 (𝜑 → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
5313, 52mpbird 260 . . . . . . 7 (𝜑𝐼𝑋)
54 elfzle2 13116 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
5519, 54syl 17 . . . . . . . . . 10 (𝜑𝑋𝑀)
56 df-ne 2941 . . . . . . . . . . . 12 (𝑋𝑀 ↔ ¬ 𝑋 = 𝑀)
5710, 56sylibr 237 . . . . . . . . . . 11 (𝜑𝑋𝑀)
5857necomd 2996 . . . . . . . . . 10 (𝜑𝑀𝑋)
5955, 58jca 515 . . . . . . . . 9 (𝜑 → (𝑋𝑀𝑀𝑋))
6027nnred 11845 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
6151, 60ltlend 10977 . . . . . . . . 9 (𝜑 → (𝑋 < 𝑀 ↔ (𝑋𝑀𝑀𝑋)))
6259, 61mpbird 260 . . . . . . . 8 (𝜑𝑋 < 𝑀)
63 zltlem1 12230 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑋 < 𝑀𝑋 ≤ (𝑀 − 1)))
6420, 46, 63syl2anc 587 . . . . . . . 8 (𝜑 → (𝑋 < 𝑀𝑋 ≤ (𝑀 − 1)))
6562, 64mpbid 235 . . . . . . 7 (𝜑𝑋 ≤ (𝑀 − 1))
6623, 47, 20, 53, 65elfzd 13103 . . . . . 6 (𝜑𝑋 ∈ (𝐼...(𝑀 − 1)))
67 elun2 4091 . . . . . 6 (𝑋 ∈ (𝐼...(𝑀 − 1)) → 𝑋 ∈ ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6866, 67syl 17 . . . . 5 (𝜑𝑋 ∈ ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6933, 34, 45, 68fvun1d 6804 . . . 4 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = ((𝐶𝐷)‘𝑋))
7032simp1d 1144 . . . . . 6 (𝜑𝐶 Fn (1...(𝐼 − 1)))
7132simp2d 1145 . . . . . 6 (𝜑𝐷 Fn (𝐼...(𝑀 − 1)))
7238simp1d 1144 . . . . . 6 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
7370, 71, 72, 66fvun2d 6805 . . . . 5 (𝜑 → ((𝐶𝐷)‘𝑋) = (𝐷𝑋))
7430a1i 11 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))))
75 simpr 488 . . . . . . 7 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
7675oveq1d 7228 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
7720zred 12282 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
78 lenlt 10911 . . . . . . . . 9 ((𝐼 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
7948, 77, 78syl2anc 587 . . . . . . . 8 (𝜑 → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
8013, 79mpbird 260 . . . . . . 7 (𝜑𝐼𝑋)
8177, 60ltlend 10977 . . . . . . . . 9 (𝜑 → (𝑋 < 𝑀 ↔ (𝑋𝑀𝑀𝑋)))
8259, 81mpbird 260 . . . . . . . 8 (𝜑𝑋 < 𝑀)
8382, 64mpbid 235 . . . . . . 7 (𝜑𝑋 ≤ (𝑀 − 1))
8423, 47, 20, 80, 83elfzd 13103 . . . . . 6 (𝜑𝑋 ∈ (𝐼...(𝑀 − 1)))
8574, 76, 84, 25fvmptd 6825 . . . . 5 (𝜑 → (𝐷𝑋) = (𝑋 + (1 − 𝐼)))
8673, 85eqtrd 2777 . . . 4 (𝜑 → ((𝐶𝐷)‘𝑋) = (𝑋 + (1 − 𝐼)))
8769, 86eqtrd 2777 . . 3 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = (𝑋 + (1 − 𝐼)))
8887eqcomd 2743 . 2 (𝜑 → (𝑋 + (1 − 𝐼)) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
8926, 88eqtrd 2777 1 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  cun 3864  cin 3865  c0 4237  ifcif 4439  {csn 4541  cop 4547   class class class wbr 5053  cmpt 5135   Fn wfn 6375  cfv 6380  (class class class)co 7213  cr 10728  1c1 10730   + caddc 10732   < clt 10867  cle 10868  cmin 11062  cn 11830  cz 12176  ...cfz 13095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096
This theorem is referenced by:  metakunt23  39869
  Copyright terms: Public domain W3C validator