Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt22 Structured version   Visualization version   GIF version

Theorem metakunt22 42228
Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt22.1 (𝜑𝑀 ∈ ℕ)
metakunt22.2 (𝜑𝐼 ∈ ℕ)
metakunt22.3 (𝜑𝐼𝑀)
metakunt22.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
metakunt22.5 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
metakunt22.6 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
metakunt22.7 (𝜑𝑋 ∈ (1...𝑀))
metakunt22.8 (𝜑 → ¬ 𝑋 = 𝑀)
metakunt22.9 (𝜑 → ¬ 𝑋 < 𝐼)
Assertion
Ref Expression
metakunt22 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem metakunt22
StepHypRef Expression
1 metakunt22.4 . . . 4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
21a1i 11 . . 3 (𝜑𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))))))
3 eqeq1 2740 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝑀𝑋 = 𝑀))
4 breq1 5145 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 oveq1 7439 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
6 oveq1 7439 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
74, 5, 6ifbieq12d 4553 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
83, 7ifbieq2d 4551 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
98adantl 481 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
10 metakunt22.8 . . . . . . 7 (𝜑 → ¬ 𝑋 = 𝑀)
11 iffalse 4533 . . . . . . 7 𝑋 = 𝑀 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
1210, 11syl 17 . . . . . 6 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
13 metakunt22.9 . . . . . . 7 (𝜑 → ¬ 𝑋 < 𝐼)
14 iffalse 4533 . . . . . . 7 𝑋 < 𝐼 → if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))) = (𝑋 + (1 − 𝐼)))
1513, 14syl 17 . . . . . 6 (𝜑 → if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))) = (𝑋 + (1 − 𝐼)))
1612, 15eqtrd 2776 . . . . 5 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = (𝑋 + (1 − 𝐼)))
1716adantr 480 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = (𝑋 + (1 − 𝐼)))
189, 17eqtrd 2776 . . 3 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = (𝑋 + (1 − 𝐼)))
19 metakunt22.7 . . 3 (𝜑𝑋 ∈ (1...𝑀))
2019elfzelzd 13566 . . . 4 (𝜑𝑋 ∈ ℤ)
21 1zzd 12650 . . . . 5 (𝜑 → 1 ∈ ℤ)
22 metakunt22.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
2322nnzd 12642 . . . . 5 (𝜑𝐼 ∈ ℤ)
2421, 23zsubcld 12729 . . . 4 (𝜑 → (1 − 𝐼) ∈ ℤ)
2520, 24zaddcld 12728 . . 3 (𝜑 → (𝑋 + (1 − 𝐼)) ∈ ℤ)
262, 18, 19, 25fvmptd 7022 . 2 (𝜑 → (𝐵𝑋) = (𝑋 + (1 − 𝐼)))
27 metakunt22.1 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
28 metakunt22.3 . . . . . . . 8 (𝜑𝐼𝑀)
29 metakunt22.5 . . . . . . . 8 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
30 metakunt22.6 . . . . . . . 8 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
3127, 22, 28, 1, 29, 30metakunt19 42225 . . . . . . 7 (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
3231simpld 494 . . . . . 6 (𝜑 → (𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
3332simp3d 1144 . . . . 5 (𝜑 → (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
3431simprd 495 . . . . 5 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
35 indir 4285 . . . . . . 7 (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀}))
3635a1i 11 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})))
3727, 22, 28metakunt18 42224 . . . . . . . . . 10 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
3837simpld 494 . . . . . . . . 9 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
3938simp2d 1143 . . . . . . . 8 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
4038simp3d 1144 . . . . . . . 8 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
4139, 40uneq12d 4168 . . . . . . 7 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = (∅ ∪ ∅))
42 unidm 4156 . . . . . . . 8 (∅ ∪ ∅) = ∅
4342a1i 11 . . . . . . 7 (𝜑 → (∅ ∪ ∅) = ∅)
4441, 43eqtrd 2776 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = ∅)
4536, 44eqtrd 2776 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
4627nnzd 12642 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
4746, 21zsubcld 12729 . . . . . . 7 (𝜑 → (𝑀 − 1) ∈ ℤ)
4822nnred 12282 . . . . . . . . 9 (𝜑𝐼 ∈ ℝ)
49 elfznn 13594 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
5019, 49syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℕ)
5150nnred 12282 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
5248, 51lenltd 11408 . . . . . . . 8 (𝜑 → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
5313, 52mpbird 257 . . . . . . 7 (𝜑𝐼𝑋)
54 elfzle2 13569 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
5519, 54syl 17 . . . . . . . . . 10 (𝜑𝑋𝑀)
56 df-ne 2940 . . . . . . . . . . . 12 (𝑋𝑀 ↔ ¬ 𝑋 = 𝑀)
5710, 56sylibr 234 . . . . . . . . . . 11 (𝜑𝑋𝑀)
5857necomd 2995 . . . . . . . . . 10 (𝜑𝑀𝑋)
5955, 58jca 511 . . . . . . . . 9 (𝜑 → (𝑋𝑀𝑀𝑋))
6027nnred 12282 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
6151, 60ltlend 11407 . . . . . . . . 9 (𝜑 → (𝑋 < 𝑀 ↔ (𝑋𝑀𝑀𝑋)))
6259, 61mpbird 257 . . . . . . . 8 (𝜑𝑋 < 𝑀)
63 zltlem1 12672 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑋 < 𝑀𝑋 ≤ (𝑀 − 1)))
6420, 46, 63syl2anc 584 . . . . . . . 8 (𝜑 → (𝑋 < 𝑀𝑋 ≤ (𝑀 − 1)))
6562, 64mpbid 232 . . . . . . 7 (𝜑𝑋 ≤ (𝑀 − 1))
6623, 47, 20, 53, 65elfzd 13556 . . . . . 6 (𝜑𝑋 ∈ (𝐼...(𝑀 − 1)))
67 elun2 4182 . . . . . 6 (𝑋 ∈ (𝐼...(𝑀 − 1)) → 𝑋 ∈ ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6866, 67syl 17 . . . . 5 (𝜑𝑋 ∈ ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
6933, 34, 45, 68fvun1d 7001 . . . 4 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = ((𝐶𝐷)‘𝑋))
7032simp1d 1142 . . . . . 6 (𝜑𝐶 Fn (1...(𝐼 − 1)))
7132simp2d 1143 . . . . . 6 (𝜑𝐷 Fn (𝐼...(𝑀 − 1)))
7238simp1d 1142 . . . . . 6 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
7370, 71, 72, 66fvun2d 7002 . . . . 5 (𝜑 → ((𝐶𝐷)‘𝑋) = (𝐷𝑋))
7430a1i 11 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))))
75 simpr 484 . . . . . . 7 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
7675oveq1d 7447 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
7720zred 12724 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
78 lenlt 11340 . . . . . . . . 9 ((𝐼 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
7948, 77, 78syl2anc 584 . . . . . . . 8 (𝜑 → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
8013, 79mpbird 257 . . . . . . 7 (𝜑𝐼𝑋)
8177, 60ltlend 11407 . . . . . . . . 9 (𝜑 → (𝑋 < 𝑀 ↔ (𝑋𝑀𝑀𝑋)))
8259, 81mpbird 257 . . . . . . . 8 (𝜑𝑋 < 𝑀)
8382, 64mpbid 232 . . . . . . 7 (𝜑𝑋 ≤ (𝑀 − 1))
8423, 47, 20, 80, 83elfzd 13556 . . . . . 6 (𝜑𝑋 ∈ (𝐼...(𝑀 − 1)))
8574, 76, 84, 25fvmptd 7022 . . . . 5 (𝜑 → (𝐷𝑋) = (𝑋 + (1 − 𝐼)))
8673, 85eqtrd 2776 . . . 4 (𝜑 → ((𝐶𝐷)‘𝑋) = (𝑋 + (1 − 𝐼)))
8769, 86eqtrd 2776 . . 3 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = (𝑋 + (1 − 𝐼)))
8887eqcomd 2742 . 2 (𝜑 → (𝑋 + (1 − 𝐼)) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
8926, 88eqtrd 2776 1 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  cun 3948  cin 3949  c0 4332  ifcif 4524  {csn 4625  cop 4631   class class class wbr 5142  cmpt 5224   Fn wfn 6555  cfv 6560  (class class class)co 7432  cr 11155  1c1 11157   + caddc 11159   < clt 11296  cle 11297  cmin 11493  cn 12267  cz 12615  ...cfz 13548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549
This theorem is referenced by:  metakunt23  42229
  Copyright terms: Public domain W3C validator