![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvun2d | Structured version Visualization version GIF version |
Description: The value of a union when the argument is in the second domain, a deduction version. (Contributed by metakunt, 28-May-2024.) |
Ref | Expression |
---|---|
fvun2d.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fvun2d.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
fvun2d.3 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
fvun2d.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
fvun2d | ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvun2d.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fvun2d.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | fvun2d.3 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
4 | fvun2d.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | 3, 4 | jca 511 | . . 3 ⊢ (𝜑 → ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) |
6 | 1, 2, 5 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵))) |
7 | fvun2 7014 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) | |
8 | 6, 7 | syl 17 | 1 ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: noetainflem4 27803 metakunt20 42181 metakunt22 42183 ofun 42231 tfsconcatfv2 43302 |
Copyright terms: Public domain | W3C validator |