MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun2d Structured version   Visualization version   GIF version

Theorem fvun2d 6862
Description: The value of a union when the argument is in the second domain, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
fvun2d.1 (𝜑𝐹 Fn 𝐴)
fvun2d.2 (𝜑𝐺 Fn 𝐵)
fvun2d.3 (𝜑 → (𝐴𝐵) = ∅)
fvun2d.4 (𝜑𝑋𝐵)
Assertion
Ref Expression
fvun2d (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))

Proof of Theorem fvun2d
StepHypRef Expression
1 fvun2d.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 fvun2d.2 . . 3 (𝜑𝐺 Fn 𝐵)
3 fvun2d.3 . . . 4 (𝜑 → (𝐴𝐵) = ∅)
4 fvun2d.4 . . . 4 (𝜑𝑋𝐵)
53, 4jca 512 . . 3 (𝜑 → ((𝐴𝐵) = ∅ ∧ 𝑋𝐵))
61, 2, 53jca 1127 . 2 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)))
7 fvun2 6860 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
86, 7syl 17 1 (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cun 3885  cin 3886  c0 4256   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  noetainflem4  33943  metakunt20  40144  metakunt22  40146  ofun  40211
  Copyright terms: Public domain W3C validator