| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvun2d | Structured version Visualization version GIF version | ||
| Description: The value of a union when the argument is in the second domain, a deduction version. (Contributed by metakunt, 28-May-2024.) |
| Ref | Expression |
|---|---|
| fvun2d.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fvun2d.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| fvun2d.3 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| fvun2d.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fvun2d | ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvun2d.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fvun2d.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | fvun2d.3 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 4 | fvun2d.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | 3, 4 | jca 511 | . . 3 ⊢ (𝜑 → ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) |
| 6 | 1, 2, 5 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵))) |
| 7 | fvun2 6971 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ∩ cin 3925 ∅c0 4308 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 |
| This theorem is referenced by: noetainflem4 27704 metakunt20 42237 metakunt22 42239 ofun 42287 tfsconcatfv2 43364 |
| Copyright terms: Public domain | W3C validator |