MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun2d Structured version   Visualization version   GIF version

Theorem fvun2d 6998
Description: The value of a union when the argument is in the second domain, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
fvun2d.1 (𝜑𝐹 Fn 𝐴)
fvun2d.2 (𝜑𝐺 Fn 𝐵)
fvun2d.3 (𝜑 → (𝐴𝐵) = ∅)
fvun2d.4 (𝜑𝑋𝐵)
Assertion
Ref Expression
fvun2d (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))

Proof of Theorem fvun2d
StepHypRef Expression
1 fvun2d.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 fvun2d.2 . . 3 (𝜑𝐺 Fn 𝐵)
3 fvun2d.3 . . . 4 (𝜑 → (𝐴𝐵) = ∅)
4 fvun2d.4 . . . 4 (𝜑𝑋𝐵)
53, 4jca 510 . . 3 (𝜑 → ((𝐴𝐵) = ∅ ∧ 𝑋𝐵))
61, 2, 53jca 1125 . 2 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)))
7 fvun2 6996 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
86, 7syl 17 1 (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  cun 3945  cin 3946  c0 4325   Fn wfn 6551  cfv 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pr 5435
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-br 5156  df-opab 5218  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6508  df-fun 6558  df-fn 6559  df-fv 6564
This theorem is referenced by:  noetainflem4  27773  metakunt20  41912  metakunt22  41914  ofun  41962  tfsconcatfv2  43024
  Copyright terms: Public domain W3C validator