| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvun2d | Structured version Visualization version GIF version | ||
| Description: The value of a union when the argument is in the second domain, a deduction version. (Contributed by metakunt, 28-May-2024.) |
| Ref | Expression |
|---|---|
| fvun2d.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fvun2d.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| fvun2d.3 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| fvun2d.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fvun2d | ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvun2d.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fvun2d.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | fvun2d.3 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 4 | fvun2d.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | 3, 4 | jca 511 | . . 3 ⊢ (𝜑 → ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) |
| 6 | 1, 2, 5 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵))) |
| 7 | fvun2 6953 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ∩ cin 3913 ∅c0 4296 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: noetainflem4 27652 ofun 42224 tfsconcatfv2 43329 |
| Copyright terms: Public domain | W3C validator |