MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun2d Structured version   Visualization version   GIF version

Theorem fvun2d 6844
Description: The value of a union when the argument is in the second domain, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
fvun2d.1 (𝜑𝐹 Fn 𝐴)
fvun2d.2 (𝜑𝐺 Fn 𝐵)
fvun2d.3 (𝜑 → (𝐴𝐵) = ∅)
fvun2d.4 (𝜑𝑋𝐵)
Assertion
Ref Expression
fvun2d (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))

Proof of Theorem fvun2d
StepHypRef Expression
1 fvun2d.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 fvun2d.2 . . 3 (𝜑𝐺 Fn 𝐵)
3 fvun2d.3 . . . 4 (𝜑 → (𝐴𝐵) = ∅)
4 fvun2d.4 . . . 4 (𝜑𝑋𝐵)
53, 4jca 511 . . 3 (𝜑 → ((𝐴𝐵) = ∅ ∧ 𝑋𝐵))
61, 2, 53jca 1126 . 2 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)))
7 fvun2 6842 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
86, 7syl 17 1 (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cun 3881  cin 3882  c0 4253   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  noetainflem4  33870  metakunt20  40072  metakunt22  40074  ofun  40137
  Copyright terms: Public domain W3C validator