MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun2d Structured version   Visualization version   GIF version

Theorem fvun2d 6922
Description: The value of a union when the argument is in the second domain, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
fvun2d.1 (𝜑𝐹 Fn 𝐴)
fvun2d.2 (𝜑𝐺 Fn 𝐵)
fvun2d.3 (𝜑 → (𝐴𝐵) = ∅)
fvun2d.4 (𝜑𝑋𝐵)
Assertion
Ref Expression
fvun2d (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))

Proof of Theorem fvun2d
StepHypRef Expression
1 fvun2d.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 fvun2d.2 . . 3 (𝜑𝐺 Fn 𝐵)
3 fvun2d.3 . . . 4 (𝜑 → (𝐴𝐵) = ∅)
4 fvun2d.4 . . . 4 (𝜑𝑋𝐵)
53, 4jca 511 . . 3 (𝜑 → ((𝐴𝐵) = ∅ ∧ 𝑋𝐵))
61, 2, 53jca 1128 . 2 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)))
7 fvun2 6920 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
86, 7syl 17 1 (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cun 3895  cin 3896  c0 4282   Fn wfn 6482  cfv 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-fv 6495
This theorem is referenced by:  noetainflem4  27685  ofun  42335  tfsconcatfv2  43438
  Copyright terms: Public domain W3C validator