Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvun2d | Structured version Visualization version GIF version |
Description: The value of a union when the argument is in the second domain, a deduction version. (Contributed by metakunt, 28-May-2024.) |
Ref | Expression |
---|---|
fvun2d.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fvun2d.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
fvun2d.3 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
fvun2d.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
fvun2d | ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvun2d.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fvun2d.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | fvun2d.3 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
4 | fvun2d.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | 3, 4 | jca 511 | . . 3 ⊢ (𝜑 → ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) |
6 | 1, 2, 5 | 3jca 1126 | . 2 ⊢ (𝜑 → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵))) |
7 | fvun2 6842 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) | |
8 | 6, 7 | syl 17 | 1 ⊢ (𝜑 → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: noetainflem4 33870 metakunt20 40072 metakunt22 40074 ofun 40137 |
Copyright terms: Public domain | W3C validator |