Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt21 Structured version   Visualization version   GIF version

Theorem metakunt21 39652
Description: Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt21.1 (𝜑𝑀 ∈ ℕ)
metakunt21.2 (𝜑𝐼 ∈ ℕ)
metakunt21.3 (𝜑𝐼𝑀)
metakunt21.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
metakunt21.5 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
metakunt21.6 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
metakunt21.7 (𝜑𝑋 ∈ (1...𝑀))
metakunt21.8 (𝜑 → ¬ 𝑋 = 𝑀)
metakunt21.9 (𝜑𝑋 < 𝐼)
Assertion
Ref Expression
metakunt21 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem metakunt21
StepHypRef Expression
1 metakunt21.4 . . . 4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
21a1i 11 . . 3 (𝜑𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))))))
3 eqeq1 2763 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝑀𝑋 = 𝑀))
4 breq1 5028 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 oveq1 7150 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
6 oveq1 7150 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 + (1 − 𝐼)) = (𝑋 + (1 − 𝐼)))
74, 5, 6ifbieq12d 4441 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
83, 7ifbieq2d 4439 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
98adantl 486 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))))
10 metakunt21.8 . . . . . . 7 (𝜑 → ¬ 𝑋 = 𝑀)
1110iffalsed 4424 . . . . . 6 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))))
12 metakunt21.9 . . . . . . 7 (𝜑𝑋 < 𝐼)
1312iftrued 4421 . . . . . 6 (𝜑 → if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼))) = (𝑋 + (𝑀𝐼)))
1411, 13eqtrd 2794 . . . . 5 (𝜑 → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = (𝑋 + (𝑀𝐼)))
1514adantr 485 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑋 = 𝑀, 𝑀, if(𝑋 < 𝐼, (𝑋 + (𝑀𝐼)), (𝑋 + (1 − 𝐼)))) = (𝑋 + (𝑀𝐼)))
169, 15eqtrd 2794 . . 3 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) = (𝑋 + (𝑀𝐼)))
17 metakunt21.7 . . 3 (𝜑𝑋 ∈ (1...𝑀))
1817elfzelzd 12942 . . . 4 (𝜑𝑋 ∈ ℤ)
19 metakunt21.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
2019nnzd 12110 . . . . 5 (𝜑𝑀 ∈ ℤ)
21 metakunt21.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
2221nnzd 12110 . . . . 5 (𝜑𝐼 ∈ ℤ)
2320, 22zsubcld 12116 . . . 4 (𝜑 → (𝑀𝐼) ∈ ℤ)
2418, 23zaddcld 12115 . . 3 (𝜑 → (𝑋 + (𝑀𝐼)) ∈ ℤ)
252, 16, 17, 24fvmptd 6759 . 2 (𝜑 → (𝐵𝑋) = (𝑋 + (𝑀𝐼)))
26 metakunt21.3 . . . . . . . 8 (𝜑𝐼𝑀)
27 metakunt21.5 . . . . . . . 8 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
28 metakunt21.6 . . . . . . . 8 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
2919, 21, 26, 1, 27, 28metakunt19 39650 . . . . . . 7 (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
3029simpld 499 . . . . . 6 (𝜑 → (𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
3130simp3d 1142 . . . . 5 (𝜑 → (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
3229simprd 500 . . . . 5 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
33 indir 4176 . . . . . . 7 (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀}))
3433a1i 11 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})))
3519, 21, 26metakunt18 39649 . . . . . . . . . 10 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
3635simpld 499 . . . . . . . . 9 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
3736simp2d 1141 . . . . . . . 8 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
3836simp3d 1142 . . . . . . . 8 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
3937, 38uneq12d 4065 . . . . . . 7 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = (∅ ∪ ∅))
40 unidm 4053 . . . . . . . 8 (∅ ∪ ∅) = ∅
4140a1i 11 . . . . . . 7 (𝜑 → (∅ ∪ ∅) = ∅)
4239, 41eqtrd 2794 . . . . . 6 (𝜑 → (((1...(𝐼 − 1)) ∩ {𝑀}) ∪ ((𝐼...(𝑀 − 1)) ∩ {𝑀})) = ∅)
4334, 42eqtrd 2794 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
44 1zzd 12037 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4522, 44zsubcld 12116 . . . . . . 7 (𝜑 → (𝐼 − 1) ∈ ℤ)
46 elfznn 12970 . . . . . . . . 9 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
4717, 46syl 17 . . . . . . . 8 (𝜑𝑋 ∈ ℕ)
4847nnge1d 11707 . . . . . . 7 (𝜑 → 1 ≤ 𝑋)
49 zltlem1 12059 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑋 < 𝐼𝑋 ≤ (𝐼 − 1)))
5018, 22, 49syl2anc 588 . . . . . . . 8 (𝜑 → (𝑋 < 𝐼𝑋 ≤ (𝐼 − 1)))
5112, 50mpbid 235 . . . . . . 7 (𝜑𝑋 ≤ (𝐼 − 1))
5244, 45, 18, 48, 51elfzd 12932 . . . . . 6 (𝜑𝑋 ∈ (1...(𝐼 − 1)))
53 elun1 4077 . . . . . 6 (𝑋 ∈ (1...(𝐼 − 1)) → 𝑋 ∈ ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
5452, 53syl 17 . . . . 5 (𝜑𝑋 ∈ ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
5531, 32, 43, 54fvun1d 6738 . . . 4 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = ((𝐶𝐷)‘𝑋))
5630simp1d 1140 . . . . . 6 (𝜑𝐶 Fn (1...(𝐼 − 1)))
5730simp2d 1141 . . . . . 6 (𝜑𝐷 Fn (𝐼...(𝑀 − 1)))
5836simp1d 1140 . . . . . 6 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
5956, 57, 58, 52fvun1d 6738 . . . . 5 (𝜑 → ((𝐶𝐷)‘𝑋) = (𝐶𝑋))
6027a1i 11 . . . . . 6 (𝜑𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))))
615adantl 486 . . . . . 6 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
6260, 61, 52, 24fvmptd 6759 . . . . 5 (𝜑 → (𝐶𝑋) = (𝑋 + (𝑀𝐼)))
6359, 62eqtrd 2794 . . . 4 (𝜑 → ((𝐶𝐷)‘𝑋) = (𝑋 + (𝑀𝐼)))
6455, 63eqtrd 2794 . . 3 (𝜑 → (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋) = (𝑋 + (𝑀𝐼)))
6564eqcomd 2765 . 2 (𝜑 → (𝑋 + (𝑀𝐼)) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
6625, 65eqtrd 2794 1 (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  cun 3852  cin 3853  c0 4221  ifcif 4413  {csn 4515  cop 4521   class class class wbr 5025  cmpt 5105   Fn wfn 6323  cfv 6328  (class class class)co 7143  1c1 10561   + caddc 10563   < clt 10698  cle 10699  cmin 10893  cn 11659  cz 12005  ...cfz 12924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-rp 12416  df-fz 12925
This theorem is referenced by:  metakunt23  39654
  Copyright terms: Public domain W3C validator