Home | Metamath
Proof Explorer Theorem List (p. 136 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29266) |
Hilbert Space Explorer
(29267-30789) |
Users' Mathboxes
(30790-46477) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-ceil 13501 |
The ceiling (least integer greater than or equal to) function. Defined in
ISO 80000-2:2009(E) operation 2-9.18 and the "NIST Digital Library of
Mathematical Functions" , front introduction, "Common Notations
and
Definitions" section at http://dlmf.nist.gov/front/introduction#Sx4.
See ceilval 13546 for its value, ceilge 13553 and ceilm1lt 13556 for its basic
properties, and ceilcl 13550 for its closure. For example,
(⌈‘(3 / 2)) = 2 while (⌈‘-(3 / 2)) = -1
(ex-ceil 28798).
The symbol ⌈ is inspired by the gamma shaped left bracket of the usual notation. (Contributed by David A. Wheeler, 19-May-2015.) |
⊢ ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) | ||
Theorem | flval 13502* | Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) | ||
Theorem | flcl 13503 | The floor (greatest integer) function is an integer (closure law). (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | ||
Theorem | reflcl 13504 | The floor (greatest integer) function is real. (Contributed by NM, 15-Jul-2008.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | ||
Theorem | fllelt 13505 | A basic property of the floor (greatest integer) function. (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | ||
Theorem | flcld 13506 | The floor (greatest integer) function is an integer (closure law). (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) | ||
Theorem | flle 13507 | A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | ||
Theorem | flltp1 13508 | A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1)) | ||
Theorem | fllep1 13509 | A basic property of the floor (greatest integer) function. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1)) | ||
Theorem | fraclt1 13510 | The fractional part of a real number is less than one. (Contributed by NM, 15-Jul-2008.) |
⊢ (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) < 1) | ||
Theorem | fracle1 13511 | The fractional part of a real number is less than or equal to one. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ≤ 1) | ||
Theorem | fracge0 13512 | The fractional part of a real number is nonnegative. (Contributed by NM, 17-Jul-2008.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 − (⌊‘𝐴))) | ||
Theorem | flge 13513 | The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ (⌊‘𝐴))) | ||
Theorem | fllt 13514 | The floor function value is less than the next integer. (Contributed by NM, 24-Feb-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (⌊‘𝐴) < 𝐵)) | ||
Theorem | flflp1 13515 | Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) ≤ 𝐵 ↔ 𝐴 < ((⌊‘𝐵) + 1))) | ||
Theorem | flid 13516 | An integer is its own floor. (Contributed by NM, 15-Nov-2004.) |
⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) | ||
Theorem | flidm 13517 | The floor function is idempotent. (Contributed by NM, 17-Aug-2008.) |
⊢ (𝐴 ∈ ℝ → (⌊‘(⌊‘𝐴)) = (⌊‘𝐴)) | ||
Theorem | flidz 13518 | A real number equals its floor iff it is an integer. (Contributed by NM, 11-Nov-2008.) |
⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) = 𝐴 ↔ 𝐴 ∈ ℤ)) | ||
Theorem | flltnz 13519 | The floor of a non-integer real is less than it. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴) | ||
Theorem | flwordi 13520 | Ordering relation for the floor function. (Contributed by NM, 31-Dec-2005.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (⌊‘𝐴) ≤ (⌊‘𝐵)) | ||
Theorem | flword2 13521 | Ordering relation for the floor function. (Contributed by Mario Carneiro, 7-Jun-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (⌊‘𝐵) ∈ (ℤ≥‘(⌊‘𝐴))) | ||
Theorem | flval2 13522* | An alternate way to define the floor function. (Contributed by NM, 16-Nov-2004.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) | ||
Theorem | flval3 13523* | An alternate way to define the floor function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) | ||
Theorem | flbi 13524 | A condition equivalent to floor. (Contributed by NM, 11-Mar-2005.) (Revised by Mario Carneiro, 2-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)))) | ||
Theorem | flbi2 13525 | A condition equivalent to floor. (Contributed by NM, 15-Aug-2008.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹 ∧ 𝐹 < 1))) | ||
Theorem | adddivflid 13526 | The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴)) | ||
Theorem | ico01fl0 13527 | The floor of a real number in [0, 1) is 0. Remark: may shorten the proof of modid 13604 or a version of it where the antecedent is membership in an interval. (Contributed by BJ, 29-Jun-2019.) |
⊢ (𝐴 ∈ (0[,)1) → (⌊‘𝐴) = 0) | ||
Theorem | flge0nn0 13528 | The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) | ||
Theorem | flge1nn 13529 | The floor of a number greater than or equal to 1 is a positive integer. (Contributed by NM, 26-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ) | ||
Theorem | fldivnn0 13530 | The floor function of a division of a nonnegative integer by a positive integer is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℕ0) | ||
Theorem | refldivcl 13531 | The floor function of a division of a real number by a positive real number is a real number. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ+) → (⌊‘(𝐾 / 𝐿)) ∈ ℝ) | ||
Theorem | divfl0 13532 | The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (⌊‘(𝐴 / 𝐵)) = 0)) | ||
Theorem | fladdz 13533 | An integer can be moved in and out of the floor of a sum. (Contributed by NM, 27-Apr-2005.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁)) | ||
Theorem | flzadd 13534 | An integer can be moved in and out of the floor of a sum. (Contributed by NM, 2-Jan-2009.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (⌊‘(𝑁 + 𝐴)) = (𝑁 + (⌊‘𝐴))) | ||
Theorem | flmulnn0 13535 | Move a nonnegative integer in and out of a floor. (Contributed by NM, 2-Jan-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))) | ||
Theorem | btwnzge0 13536 | A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (For the first half see rebtwnz 12675.) (Contributed by NM, 12-Mar-2005.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁)) | ||
Theorem | 2tnp1ge0ge0 13537 | Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁)) | ||
Theorem | flhalf 13538 | Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2)))) | ||
Theorem | fldivle 13539 | The floor function of a division of a real number by a positive real number is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ+) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿)) | ||
Theorem | fldivnn0le 13540 | The floor function of a division of a nonnegative integer by a positive integer is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿)) | ||
Theorem | flltdivnn0lt 13541 | The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿))) | ||
Theorem | ltdifltdiv 13542 | If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ) → (𝐴 < (𝐶 − 𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵))) | ||
Theorem | fldiv4p1lem1div2 13543 | The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.) |
⊢ ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)) | ||
Theorem | fldiv4lem1div2uz2 13544 | The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | ||
Theorem | fldiv4lem1div2 13545 | The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.) |
⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | ||
Theorem | ceilval 13546 | The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.) |
⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴)) | ||
Theorem | dfceil2 13547* | Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.) |
⊢ ⌈ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)))) | ||
Theorem | ceilval2 13548* | The value of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.) |
⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = (℩𝑦 ∈ ℤ (𝐴 ≤ 𝑦 ∧ 𝑦 < (𝐴 + 1)))) | ||
Theorem | ceicl 13549 | The ceiling function returns an integer (closure law). (Contributed by Jeff Hankins, 10-Jun-2007.) |
⊢ (𝐴 ∈ ℝ → -(⌊‘-𝐴) ∈ ℤ) | ||
Theorem | ceilcl 13550 | Closure of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.) |
⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) ∈ ℤ) | ||
Theorem | ceilcld 13551 | Closure of the ceiling function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (⌈‘𝐴) ∈ ℤ) | ||
Theorem | ceige 13552 | The ceiling of a real number is greater than or equal to that number. (Contributed by Jeff Hankins, 10-Jun-2007.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ -(⌊‘-𝐴)) | ||
Theorem | ceilge 13553 | The ceiling of a real number is greater than or equal to that number. (Contributed by AV, 30-Nov-2018.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (⌈‘𝐴)) | ||
Theorem | ceilged 13554 | The ceiling of a real number is greater than or equal to that number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ (⌈‘𝐴)) | ||
Theorem | ceim1l 13555 | One less than the ceiling of a real number is strictly less than that number. (Contributed by Jeff Hankins, 10-Jun-2007.) |
⊢ (𝐴 ∈ ℝ → (-(⌊‘-𝐴) − 1) < 𝐴) | ||
Theorem | ceilm1lt 13556 | One less than the ceiling of a real number is strictly less than that number. (Contributed by AV, 30-Nov-2018.) |
⊢ (𝐴 ∈ ℝ → ((⌈‘𝐴) − 1) < 𝐴) | ||
Theorem | ceile 13557 | The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jeff Hankins, 10-Jun-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵) → -(⌊‘-𝐴) ≤ 𝐵) | ||
Theorem | ceille 13558 | The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by AV, 30-Nov-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵) → (⌈‘𝐴) ≤ 𝐵) | ||
Theorem | ceilid 13559 | An integer is its own ceiling. (Contributed by AV, 30-Nov-2018.) |
⊢ (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴) | ||
Theorem | ceilidz 13560 | A real number equals its ceiling iff it is an integer. (Contributed by AV, 30-Nov-2018.) |
⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴)) | ||
Theorem | flleceil 13561 | The floor of a real number is less than or equal to its ceiling. (Contributed by AV, 30-Nov-2018.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ (⌈‘𝐴)) | ||
Theorem | fleqceilz 13562 | A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018.) |
⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴))) | ||
Theorem | quoremz 13563 | Quotient and remainder of an integer divided by a positive integer. TODO - is this really needed for anything? Should we use mod to simplify it? Remark (AV): This is a special case of divalg 16100. (Contributed by NM, 14-Aug-2008.) |
⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) & ⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) | ||
Theorem | quoremnn0 13564 | Quotient and remainder of a nonnegative integer divided by a positive integer. (Contributed by NM, 14-Aug-2008.) |
⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) & ⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) ⇒ ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) | ||
Theorem | quoremnn0ALT 13565 | Alternate proof of quoremnn0 13564 not using quoremz 13563. TODO - Keep either quoremnn0ALT 13565 (if we don't keep quoremz 13563) or quoremnn0 13564? (Contributed by NM, 14-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) & ⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) ⇒ ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) | ||
Theorem | intfrac2 13566 | Decompose a real into integer and fractional parts. TODO - should we replace this with intfrac 13594? (Contributed by NM, 16-Aug-2008.) |
⊢ 𝑍 = (⌊‘𝐴) & ⊢ 𝐹 = (𝐴 − 𝑍) ⇒ ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) | ||
Theorem | intfracq 13567 | Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 13566. (Contributed by NM, 16-Aug-2008.) |
⊢ 𝑍 = (⌊‘(𝑀 / 𝑁)) & ⊢ 𝐹 = ((𝑀 / 𝑁) − 𝑍) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹 ∧ 𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹))) | ||
Theorem | fldiv 13568 | Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁))) | ||
Theorem | fldiv2 13569 | Cancellation of an embedded floor of a ratio. Generalization of Equation 2.4 in [CormenLeisersonRivest] p. 33 (where 𝐴 must be an integer). (Contributed by NM, 9-Nov-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘(𝐴 / 𝑀)) / 𝑁)) = (⌊‘(𝐴 / (𝑀 · 𝑁)))) | ||
Theorem | fznnfl 13570 | Finite set of sequential integers starting at 1 and ending at a real number. (Contributed by Mario Carneiro, 3-May-2016.) |
⊢ (𝑁 ∈ ℝ → (𝐾 ∈ (1...(⌊‘𝑁)) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁))) | ||
Theorem | uzsup 13571 | An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) | ||
Theorem | ioopnfsup 13572 | An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → sup((𝐴(,)+∞), ℝ*, < ) = +∞) | ||
Theorem | icopnfsup 13573 | An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞) | ||
Theorem | rpsup 13574 | The positive reals are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
⊢ sup(ℝ+, ℝ*, < ) = +∞ | ||
Theorem | resup 13575 | The real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
⊢ sup(ℝ, ℝ*, < ) = +∞ | ||
Theorem | xrsup 13576 | The extended real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
⊢ sup(ℝ*, ℝ*, < ) = +∞ | ||
Syntax | cmo 13577 | Extend class notation with the modulo operation. |
class mod | ||
Definition | df-mod 13578* | Define the modulo (remainder) operation. See modval 13579 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1 (ex-mod 28799). (Contributed by NM, 10-Nov-2008.) |
⊢ mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) | ||
Theorem | modval 13579 | The value of the modulo operation. The modulo congruence notation of number theory, 𝐽≡𝐾 (modulo 𝑁), can be expressed in our notation as (𝐽 mod 𝑁) = (𝐾 mod 𝑁). Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive reals to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) (Contributed by NM, 10-Nov-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | ||
Theorem | modvalr 13580 | The value of the modulo operation (multiplication in reversed order). (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − ((⌊‘(𝐴 / 𝐵)) · 𝐵))) | ||
Theorem | modcl 13581 | Closure law for the modulo operation. (Contributed by NM, 10-Nov-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ ℝ) | ||
Theorem | flpmodeq 13582 | Partition of a division into its integer part and the remainder. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴) | ||
Theorem | modcld 13583 | Closure law for the modulo operation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℝ) | ||
Theorem | mod0 13584 | 𝐴 mod 𝐵 is zero iff 𝐴 is evenly divisible by 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 / 𝐵) ∈ ℤ)) | ||
Theorem | mulmod0 13585 | The product of an integer and a positive real number is 0 modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) (Revised by AV, 5-Jul-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · 𝑀) mod 𝑀) = 0) | ||
Theorem | negmod0 13586 | 𝐴 is divisible by 𝐵 iff its negative is. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (-𝐴 mod 𝐵) = 0)) | ||
Theorem | modge0 13587 | The modulo operation is nonnegative. (Contributed by NM, 10-Nov-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝐵)) | ||
Theorem | modlt 13588 | The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵) | ||
Theorem | modelico 13589 | Modular reduction produces a half-open interval. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ (0[,)𝐵)) | ||
Theorem | moddiffl 13590 | Value of the modulo operation rewritten to give two ways of expressing the quotient when "𝐴 is divided by 𝐵 using Euclidean division." Multiplying both sides by 𝐵, this implies that 𝐴 mod 𝐵 differs from 𝐴 by an integer multiple of 𝐵. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 6-Sep-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) | ||
Theorem | moddifz 13591 | The modulo operation differs from 𝐴 by an integer multiple of 𝐵. (Contributed by Mario Carneiro, 15-Jul-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ) | ||
Theorem | modfrac 13592 | The fractional part of a number is the number modulo 1. (Contributed by NM, 11-Nov-2008.) |
⊢ (𝐴 ∈ ℝ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴))) | ||
Theorem | flmod 13593 | The floor function expressed in terms of the modulo operation. (Contributed by NM, 11-Nov-2008.) |
⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝐴 − (𝐴 mod 1))) | ||
Theorem | intfrac 13594 | Break a number into its integer part and its fractional part. (Contributed by NM, 31-Dec-2008.) |
⊢ (𝐴 ∈ ℝ → 𝐴 = ((⌊‘𝐴) + (𝐴 mod 1))) | ||
Theorem | zmod10 13595 | An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝑁 ∈ ℤ → (𝑁 mod 1) = 0) | ||
Theorem | zmod1congr 13596 | Two arbitrary integers are congruent modulo 1, see example 4 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 mod 1) = (𝐵 mod 1)) | ||
Theorem | modmulnn 13597 | Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by NM, 2-Jan-2009.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀))) | ||
Theorem | modvalp1 13598 | The value of the modulo operation (expressed with sum of denominator and nominator). (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + 𝐵) − (((⌊‘(𝐴 / 𝐵)) + 1) · 𝐵)) = (𝐴 mod 𝐵)) | ||
Theorem | zmodcl 13599 | Closure law for the modulo operation restricted to integers. (Contributed by NM, 27-Nov-2008.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℕ0) | ||
Theorem | zmodcld 13600 | Closure law for the modulo operation restricted to integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℕ0) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |