| Metamath
Proof Explorer Theorem List (p. 136 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | iccshftr 13501 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 + 𝑅) = 𝐶 & ⊢ (𝐵 + 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))) | ||
| Theorem | iccshftri 13502 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ & ⊢ (𝐴 + 𝑅) = 𝐶 & ⊢ (𝐵 + 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)) | ||
| Theorem | iccshftl 13503 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 − 𝑅) = 𝐶 & ⊢ (𝐵 − 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 − 𝑅) ∈ (𝐶[,]𝐷))) | ||
| Theorem | iccshftli 13504 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ & ⊢ (𝐴 − 𝑅) = 𝐶 & ⊢ (𝐵 − 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 − 𝑅) ∈ (𝐶[,]𝐷)) | ||
| Theorem | iccdil 13505 | Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 · 𝑅) = 𝐶 & ⊢ (𝐵 · 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) | ||
| Theorem | iccdili 13506 | Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ+ & ⊢ (𝐴 · 𝑅) = 𝐶 & ⊢ (𝐵 · 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)) | ||
| Theorem | icccntr 13507 | Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 / 𝑅) = 𝐶 & ⊢ (𝐵 / 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷))) | ||
| Theorem | icccntri 13508 | Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ+ & ⊢ (𝐴 / 𝑅) = 𝐶 & ⊢ (𝐵 / 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)) | ||
| Theorem | divelunit 13509 | A condition for a ratio to be a member of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ∈ (0[,]1) ↔ 𝐴 ≤ 𝐵)) | ||
| Theorem | lincmb01cmp 13510 | A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵)) | ||
| Theorem | iccf1o 13511* | Describe a bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵]. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ ◡𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦 − 𝐴) / (𝐵 − 𝐴))))) | ||
| Theorem | iccen 13512 | Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 8-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ≈ (𝐴[,]𝐵)) | ||
| Theorem | xov1plusxeqvd 13513 | A complex number 𝑋 is positive real iff 𝑋 / (1 + 𝑋) is in (0(,)1). Deduction form. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ -1) ⇒ ⊢ (𝜑 → (𝑋 ∈ ℝ+ ↔ (𝑋 / (1 + 𝑋)) ∈ (0(,)1))) | ||
| Theorem | unitssre 13514 | (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (0[,]1) ⊆ ℝ | ||
| Theorem | unitsscn 13515 | The closed unit interval is a subset of the set of the complex numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
| ⊢ (0[,]1) ⊆ ℂ | ||
| Theorem | supicc 13516 | Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶)) | ||
| Theorem | supiccub 13517 | The supremum of a bounded set of real numbers is an upper bound. (Contributed by Thierry Arnoux, 20-May-2019.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐷 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | supicclub 13518* | The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧)) | ||
| Theorem | supicclub2 13519* | The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐷) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷) | ||
| Theorem | zltaddlt1le 13520 | The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁)) | ||
| Theorem | xnn0xrge0 13521 | An extended nonnegative integer is an extended nonnegative real. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ (0[,]+∞)) | ||
| Syntax | cfz 13522 |
Extend class notation to include the notation for a contiguous finite set
of integers. Read "𝑀...𝑁 " as "the set of integers
from 𝑀 to
𝑁 inclusive".
This symbol is also used informally in some comments to denote an ellipsis, e.g., 𝐴 + 𝐴↑2 + ... + 𝐴↑(𝑁 − 1). |
| class ... | ||
| Definition | df-fz 13523* | Define an operation that produces a finite set of sequential integers. Read "𝑀...𝑁 " as "the set of integers from 𝑀 to 𝑁 inclusive". See fzval 13524 for its value and additional comments. (Contributed by NM, 6-Sep-2005.) |
| ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) | ||
| Theorem | fzval 13524* | The value of a finite set of sequential integers. E.g., 2...5 means the set {2, 3, 4, 5}. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where ℕk means our 1...𝑘; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) | ||
| Theorem | fzval2 13525 | An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) | ||
| Theorem | fzf 13526 | Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | ||
| Theorem | elfz1 13527 | Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | ||
| Theorem | elfz 13528 | Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | ||
| Theorem | elfz2 13529 | Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show 𝑀 ∈ ℤ and 𝑁 ∈ ℤ. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | ||
| Theorem | elfzd 13530 | Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≤ 𝐾) & ⊢ (𝜑 → 𝐾 ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | ||
| Theorem | elfz5 13531 | Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.) |
| ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) | ||
| Theorem | elfz4 13532 | Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝐾 ∈ (𝑀...𝑁)) | ||
| Theorem | elfzuzb 13533 | Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | ||
| Theorem | eluzfz 13534 | Membership in a finite set of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (𝑀...𝑁)) | ||
| Theorem | elfzuz 13535 | A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | elfzuz3 13536 | Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | ||
| Theorem | elfzel2 13537 | Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | ||
| Theorem | elfzel1 13538 | Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | ||
| Theorem | elfzelz 13539 | A member of a finite set of sequential integers is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | ||
| Theorem | elfzelzd 13540 | A member of a finite set of sequential integers is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → 𝐾 ∈ ℤ) | ||
| Theorem | fzssz 13541 | A finite sequence of integers is a set of integers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝑀...𝑁) ⊆ ℤ | ||
| Theorem | elfzle1 13542 | A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) | ||
| Theorem | elfzle2 13543 | A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) | ||
| Theorem | elfzuz2 13544 | Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | elfzle3 13545 | Membership in a finite set of sequential integer implies the bounds are comparable. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝑁) | ||
| Theorem | eluzfz1 13546 | Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | ||
| Theorem | eluzfz2 13547 | Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | ||
| Theorem | eluzfz2b 13548 | Membership in a finite set of sequential integers - special case. (Contributed by NM, 14-Sep-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (𝑀...𝑁)) | ||
| Theorem | elfz3 13549 | Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 21-Jul-2005.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁)) | ||
| Theorem | elfz1eq 13550 | Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.) |
| ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) | ||
| Theorem | elfzubelfz 13551 | If there is a member in a finite set of sequential integers, the upper bound is also a member of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-May-2018.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (𝑀...𝑁)) | ||
| Theorem | peano2fzr 13552 | A Peano-postulate-like theorem for downward closure of a finite set of sequential integers. (Contributed by Mario Carneiro, 27-May-2014.) |
| ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...𝑁)) | ||
| Theorem | fzn0 13553 | Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | fz0 13554 | A finite set of sequential integers is empty if its bounds are not integers. (Contributed by AV, 13-Oct-2018.) |
| ⊢ ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅) | ||
| Theorem | fzn 13555 | A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) | ||
| Theorem | fzen 13556 | A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) | ||
| Theorem | fz1n 13557 | A 1-based finite set of sequential integers is empty iff it ends at index 0. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝑁 ∈ ℕ0 → ((1...𝑁) = ∅ ↔ 𝑁 = 0)) | ||
| Theorem | 0nelfz1 13558 | 0 is not an element of a finite interval of integers starting at 1. (Contributed by AV, 27-Aug-2020.) |
| ⊢ 0 ∉ (1...𝑁) | ||
| Theorem | 0fz1 13559 | Two ways to say a finite 1-based sequence is empty. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (𝐹 = ∅ ↔ 𝑁 = 0)) | ||
| Theorem | fz10 13560 | There are no integers between 1 and 0. (Contributed by Jeff Madsen, 16-Jun-2010.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (1...0) = ∅ | ||
| Theorem | uzsubsubfz 13561 | Membership of an integer greater than L decreased by ( L - M ) in an M-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
| ⊢ ((𝐿 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐿)) → (𝑁 − (𝐿 − 𝑀)) ∈ (𝑀...𝑁)) | ||
| Theorem | uzsubsubfz1 13562 | Membership of an integer greater than L decreased by ( L - 1 ) in a 1-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
| ⊢ ((𝐿 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐿)) → (𝑁 − (𝐿 − 1)) ∈ (1...𝑁)) | ||
| Theorem | ige3m2fz 13563 | Membership of an integer greater than 2 decreased by 2 in a 1-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ (1...𝑁)) | ||
| Theorem | fzsplit2 13564 | Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (((𝐾 + 1) ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))) | ||
| Theorem | fzsplit 13565 | Split a finite interval of integers into two parts. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))) | ||
| Theorem | fzdisj 13566 | Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| ⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) | ||
| Theorem | fz01en 13567 | 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009.) |
| ⊢ (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁)) | ||
| Theorem | elfznn 13568 | A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) |
| ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) | ||
| Theorem | elfz1end 13569 | A nonempty finite range of integers contains its end point. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴)) | ||
| Theorem | fz1ssnn 13570 | A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ (1...𝐴) ⊆ ℕ | ||
| Theorem | fznn0sub 13571 | Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) | ||
| Theorem | fzmmmeqm 13572 | Subtracting the difference of a member of a finite range of integers and the lower bound of the range from the difference of the upper bound and the lower bound of the range results in the difference of the upper bound of the range and the member. (Contributed by Alexander van der Vekens, 27-May-2018.) |
| ⊢ (𝑀 ∈ (𝐿...𝑁) → ((𝑁 − 𝐿) − (𝑀 − 𝐿)) = (𝑁 − 𝑀)) | ||
| Theorem | fzaddel 13573 | Membership of a sum in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) | ||
| Theorem | fzadd2 13574 | Membership of a sum in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)))) | ||
| Theorem | fzsubel 13575 | Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) | ||
| Theorem | fzopth 13576 | A finite set of sequential integers has the ordered pair property (compare opth 5451) under certain conditions. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽 ∧ 𝑁 = 𝐾))) | ||
| Theorem | fzass4 13577 | Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷))) | ||
| Theorem | fzss1 13578 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) | ||
| Theorem | fzss2 13579 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁)) | ||
| Theorem | fzssuz 13580 | A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
| ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) | ||
| Theorem | fzsn 13581 | A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | ||
| Theorem | fzssp1 13582 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)) | ||
| Theorem | fzssnn 13583 | Finite sets of sequential integers starting from a natural are a subset of the positive integers. (Contributed by Thierry Arnoux, 4-Aug-2017.) |
| ⊢ (𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ) | ||
| Theorem | ssfzunsnext 13584 | A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 13-Nov-2021.) |
| ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) | ||
| Theorem | ssfzunsn 13585 | A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021.) (Proof shortened by AV, 13-Nov-2021.) |
| ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) | ||
| Theorem | fzsuc 13586 | Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | ||
| Theorem | fzpred 13587 | Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) | ||
| Theorem | fzpreddisj 13588 | A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) | ||
| Theorem | elfzp1 13589 | Append an element to a finite set of sequential integers. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))) | ||
| Theorem | fzp1ss 13590 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 26-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) | ||
| Theorem | fzelp1 13591 | Membership in a set of sequential integers with an appended element. (Contributed by NM, 7-Dec-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (𝑀...(𝑁 + 1))) | ||
| Theorem | fzp1elp1 13592 | Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 + 1) ∈ (𝑀...(𝑁 + 1))) | ||
| Theorem | fznatpl1 13593 | Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) | ||
| Theorem | fzpr 13594 | A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) | ||
| Theorem | fztp 13595 | A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) | ||
| Theorem | fz12pr 13596 | An integer range between 1 and 2 is a pair. (Contributed by AV, 11-Jan-2023.) |
| ⊢ (1...2) = {1, 2} | ||
| Theorem | fzsuc2 13597 | Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | ||
| Theorem | fzp1disj 13598 | (𝑀...(𝑁 + 1)) is the disjoint union of (𝑀...𝑁) with {(𝑁 + 1)}. (Contributed by Mario Carneiro, 7-Mar-2014.) |
| ⊢ ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ | ||
| Theorem | fzdifsuc 13599 | Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})) | ||
| Theorem | fzprval 13600* | Two ways of defining the first two values of a sequence on ℕ. (Contributed by NM, 5-Sep-2011.) |
| ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |