| Metamath
Proof Explorer Theorem List (p. 136 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fznuz 13501 | Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 30-Jun-2013.) (Revised by Mario Carneiro, 24-Aug-2013.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → ¬ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) | ||
| Theorem | uznfz 13502 | Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.) |
| ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1))) | ||
| Theorem | fzp1nel 13503 | One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017.) |
| ⊢ ¬ (𝑁 + 1) ∈ (𝑀...𝑁) | ||
| Theorem | fzrevral 13504* | Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))[(𝐾 − 𝑘) / 𝑗]𝜑)) | ||
| Theorem | fzrevral2 13505* | Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾 − 𝑘) / 𝑗]𝜑)) | ||
| Theorem | fzrevral3 13506* | Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[((𝑀 + 𝑁) − 𝑘) / 𝑗]𝜑)) | ||
| Theorem | fzshftral 13507* | Shift the scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) | ||
| Theorem | ige2m1fz1 13508 | Membership of an integer greater than 1 decreased by 1 in a 1-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ (1...𝑁)) | ||
| Theorem | ige2m1fz 13509 | Membership in a 0-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) (Proof shortened by Alexander van der Vekens, 15-Sep-2018.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ (0...𝑁)) | ||
Finite intervals of nonnegative integers (or "finite sets of sequential nonnegative integers") are finite intervals of integers with 0 as lower bound: (0...𝑁), usually abbreviated by "fz0". | ||
| Theorem | elfz2nn0 13510 | Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | ||
| Theorem | fznn0 13511 | Characterization of a finite set of sequential nonnegative integers. (Contributed by NM, 1-Aug-2005.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) | ||
| Theorem | elfznn0 13512 | A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) | ||
| Theorem | elfz3nn0 13513 | The upper bound of a nonempty finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | ||
| Theorem | fz0ssnn0 13514 | Finite sets of sequential nonnegative integers starting with 0 are subsets of NN0. (Contributed by JJ, 1-Jun-2021.) |
| ⊢ (0...𝑁) ⊆ ℕ0 | ||
| Theorem | fz1ssfz0 13515 | Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (1...𝑁) ⊆ (0...𝑁) | ||
| Theorem | 0elfz 13516 | 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | ||
| Theorem | nn0fz0 13517 | A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.) |
| ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) | ||
| Theorem | elfz0add 13518 | An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝑁 ∈ (0...𝐴) → 𝑁 ∈ (0...(𝐴 + 𝐵)))) | ||
| Theorem | fz0sn 13519 | An integer range from 0 to 0 is a singleton. (Contributed by AV, 18-Apr-2021.) |
| ⊢ (0...0) = {0} | ||
| Theorem | fz0tp 13520 | An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
| ⊢ (0...2) = {0, 1, 2} | ||
| Theorem | fz0to3un2pr 13521 | An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) |
| ⊢ (0...3) = ({0, 1} ∪ {2, 3}) | ||
| Theorem | fz0to4untppr 13522 | An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) (Proof shortened by AV, 7-Aug-2025.) |
| ⊢ (0...4) = ({0, 1, 2} ∪ {3, 4}) | ||
| Theorem | fz0to5un2tp 13523 | An integer range from 0 to 5 is the union of two triples. (Contributed by AV, 30-Jul-2025.) |
| ⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
| Theorem | elfz0ubfz0 13524 | An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
| ⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿)) | ||
| Theorem | elfz0fzfz0 13525 | A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.) |
| ⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁)) | ||
| Theorem | fz0fzelfz0 13526 | If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.) |
| ⊢ ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅)) | ||
| Theorem | fznn0sub2 13527 | Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (0...𝑁)) | ||
| Theorem | uzsubfz0 13528 | Membership of an integer greater than L decreased by L in a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
| ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐿)) → (𝑁 − 𝐿) ∈ (0...𝑁)) | ||
| Theorem | fz0fzdiffz0 13529 | The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.) |
| ⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 − 𝑀) ∈ (0...𝑁)) | ||
| Theorem | elfzmlbm 13530 | Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 𝑀) ∈ (0...(𝑁 − 𝑀))) | ||
| Theorem | elfzmlbp 13531 | Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾 − 𝑀) ∈ (0...𝑁)) | ||
| Theorem | fzctr 13532 | Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) | ||
| Theorem | difelfzle 13533 | The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
| ⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾 ≤ 𝑀) → (𝑀 − 𝐾) ∈ (0...𝑁)) | ||
| Theorem | difelfznle 13534 | The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
| ⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁)) | ||
| Theorem | nn0split 13535 | Express the set of nonnegative integers as the disjoint (see nn0disj 13536) union of the first 𝑁 + 1 values and the rest. (Contributed by AV, 8-Nov-2019.) |
| ⊢ (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) | ||
| Theorem | nn0disj 13536 | The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.) |
| ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ | ||
| Theorem | fz0sn0fz1 13537 | A finite set of sequential nonnegative integers is the union of the singleton containing 0 and a finite set of sequential positive integers. (Contributed by AV, 20-Mar-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (0...𝑁) = ({0} ∪ (1...𝑁))) | ||
| Theorem | fvffz0 13538 | The function value of a function from a finite interval of nonnegative integers. (Contributed by AV, 13-Feb-2021.) |
| ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁) ∧ 𝑃:(0...𝑁)⟶𝑉) → (𝑃‘𝐼) ∈ 𝑉) | ||
| Theorem | 1fv 13539 | A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by AV, 18-Apr-2021.) |
| ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) | ||
| Theorem | 4fvwrd4 13540* | The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.) |
| ⊢ ((𝐿 ∈ (ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑))) | ||
| Theorem | 2ffzeq 13541* | Two functions over 0-based finite set of sequential integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 30-Jun-2018.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝐹:(0...𝑀)⟶𝑋 ∧ 𝑃:(0...𝑁)⟶𝑌) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0...𝑀)(𝐹‘𝑖) = (𝑃‘𝑖)))) | ||
| Theorem | preduz 13542 | The value of the predecessor class over an upper integer set. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → Pred( < , (ℤ≥‘𝑀), 𝑁) = (𝑀...(𝑁 − 1))) | ||
| Theorem | prednn 13543 | The value of the predecessor class over the naturals. (Contributed by Scott Fenton, 6-Aug-2013.) |
| ⊢ (𝑁 ∈ ℕ → Pred( < , ℕ, 𝑁) = (1...(𝑁 − 1))) | ||
| Theorem | prednn0 13544 | The value of the predecessor class over ℕ0. (Contributed by Scott Fenton, 9-May-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1))) | ||
| Theorem | predfz 13545 | Calculate the predecessor of an integer under a finite set of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1))) | ||
| Syntax | cfzo 13546 | Syntax for half-open integer ranges. |
| class ..^ | ||
| Definition | df-fzo 13547* | Define a function generating sets of integers using a half-open range. Read (𝑀..^𝑁) as the integers from 𝑀 up to, but not including, 𝑁; contrast with (𝑀...𝑁) df-fz 13400, which includes 𝑁. Not including the endpoint simplifies a number of formulas related to cardinality and splitting; contrast fzosplit 13584 with fzsplit 13442, for instance. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | ||
| Theorem | fzof 13548 | Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | ||
| Theorem | elfzoel1 13549 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | ||
| Theorem | elfzoel2 13550 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | ||
| Theorem | elfzoelz 13551 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) | ||
| Theorem | fzoval 13552 | Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | ||
| Theorem | elfzo 13553 | Membership in a half-open finite set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | ||
| Theorem | elfzo2 13554 | Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | ||
| Theorem | elfzouz 13555 | Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | nelfzo 13556 | An integer not being a member of a half-open finite set of integers. (Contributed by AV, 29-Apr-2020.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∉ (𝑀..^𝑁) ↔ (𝐾 < 𝑀 ∨ 𝑁 ≤ 𝐾))) | ||
| Theorem | fzolb 13557 | The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with 𝑀 < 𝑁. This provides an alternative notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 𝑀 ∈ (ℤ≥‘𝑁). (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝑀 ∈ (𝑀..^𝑁) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)) | ||
| Theorem | fzolb2 13558 | The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with 𝑀 < 𝑁. This provides an alternative notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 𝑀 ∈ (ℤ≥‘𝑁). (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 < 𝑁)) | ||
| Theorem | elfzole1 13559 | A member in a half-open integer interval is greater than or equal to the lower bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ≤ 𝐾) | ||
| Theorem | elfzolt2 13560 | A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁) | ||
| Theorem | elfzolt3 13561 | Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 < 𝑁) | ||
| Theorem | elfzolt2b 13562 | A member in a half-open integer interval is less than the upper bound. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝐾..^𝑁)) | ||
| Theorem | elfzolt3b 13563 | Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ (𝑀..^𝑁)) | ||
| Theorem | elfzop1le2 13564 | A member in a half-open integer interval plus 1 is less than or equal to the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 + 1) ≤ 𝑁) | ||
| Theorem | fzonel 13565 | A half-open range does not contain its right endpoint. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ ¬ 𝐵 ∈ (𝐴..^𝐵) | ||
| Theorem | elfzouz2 13566 | The upper bound of a half-open range is greater than or equal to an element of the range. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | ||
| Theorem | elfzofz 13567 | A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀...𝑁)) | ||
| Theorem | elfzo3 13568 | Express membership in a half-open integer interval in terms of the "less than or equal to" and "less than" predicates on integers, resp. 𝐾 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝐾, 𝐾 ∈ (𝐾..^𝑁) ↔ 𝐾 < 𝑁. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ (𝐾..^𝑁))) | ||
| Theorem | fzon0 13569 | A half-open integer interval is nonempty iff it contains its left endpoint. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ ((𝑀..^𝑁) ≠ ∅ ↔ 𝑀 ∈ (𝑀..^𝑁)) | ||
| Theorem | fzossfz 13570 | A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐴..^𝐵) ⊆ (𝐴...𝐵) | ||
| Theorem | fzossz 13571 | A half-open integer interval is a set of integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝑀..^𝑁) ⊆ ℤ | ||
| Theorem | fzon 13572 | A half-open set of sequential integers is empty if the bounds are equal or reversed. (Contributed by Alexander van der Vekens, 30-Oct-2017.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 𝑀 ↔ (𝑀..^𝑁) = ∅)) | ||
| Theorem | fzo0n 13573 | A half-open range of nonnegative integers is empty iff the upper bound is not positive. (Contributed by AV, 2-May-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 𝑀 ↔ (0..^(𝑁 − 𝑀)) = ∅)) | ||
| Theorem | fzonlt0 13574 | A half-open integer range is empty if the bounds are equal or reversed. (Contributed by AV, 20-Oct-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 < 𝑁 ↔ (𝑀..^𝑁) = ∅)) | ||
| Theorem | fzo0 13575 | Half-open sets with equal endpoints are empty. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐴..^𝐴) = ∅ | ||
| Theorem | fzonnsub 13576 | If 𝐾 < 𝑁 then 𝑁 − 𝐾 is a positive integer. (Contributed by Mario Carneiro, 29-Sep-2015.) (Revised by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑁 − 𝐾) ∈ ℕ) | ||
| Theorem | fzonnsub2 13577 | If 𝑀 < 𝑁 then 𝑁 − 𝑀 is a positive integer. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑁 − 𝑀) ∈ ℕ) | ||
| Theorem | fzoss1 13578 | Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) | ||
| Theorem | fzoss2 13579 | Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁)) | ||
| Theorem | fzossrbm1 13580 | Subset of a half-open range. (Contributed by Alexander van der Vekens, 1-Nov-2017.) |
| ⊢ (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) | ||
| Theorem | fzo0ss1 13581 | Subset relationship for half-open integer ranges with lower bounds 0 and 1. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| ⊢ (1..^𝑁) ⊆ (0..^𝑁) | ||
| Theorem | fzossnn0 13582 | A half-open integer range starting at a nonnegative integer is a subset of the nonnegative integers. (Contributed by Alexander van der Vekens, 13-May-2018.) |
| ⊢ (𝑀 ∈ ℕ0 → (𝑀..^𝑁) ⊆ ℕ0) | ||
| Theorem | fzospliti 13583 | One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶))) | ||
| Theorem | fzosplit 13584 | Split a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐷 ∈ (𝐵...𝐶) → (𝐵..^𝐶) = ((𝐵..^𝐷) ∪ (𝐷..^𝐶))) | ||
| Theorem | fzodisj 13585 | Abutting half-open integer ranges are disjoint. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ((𝐴..^𝐵) ∩ (𝐵..^𝐶)) = ∅ | ||
| Theorem | fzouzsplit 13586 | Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) | ||
| Theorem | fzouzdisj 13587 | A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016.) |
| ⊢ ((𝐴..^𝐵) ∩ (ℤ≥‘𝐵)) = ∅ | ||
| Theorem | fzoun 13588 | A half-open integer range as union of two half-open integer ranges. (Contributed by AV, 23-Apr-2022.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶)))) | ||
| Theorem | fzodisjsn 13589 | A half-open integer range and the singleton of its upper bound are disjoint. (Contributed by AV, 7-Mar-2021.) |
| ⊢ ((𝐴..^𝐵) ∩ {𝐵}) = ∅ | ||
| Theorem | prinfzo0 13590 | The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021.) |
| ⊢ (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) | ||
| Theorem | lbfzo0 13591 | An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) | ||
| Theorem | elfzo0 13592 | Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) | ||
| Theorem | elfzo0z 13593 | Membership in a half-open range of nonnegative integers, generalization of elfzo0 13592 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) | ||
| Theorem | nn0p1elfzo 13594 | A nonnegative integer increased by 1 which is less than or equal to another integer is an element of a half-open range of integers. (Contributed by AV, 27-Feb-2021.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 ∈ (0..^𝑁)) | ||
| Theorem | elfzo0le 13595 | A member in a half-open range of nonnegative integers is less than or equal to the upper bound of the range. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ≤ 𝐵) | ||
| Theorem | elfzolem1 13596 | A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1)) | ||
| Theorem | elfzo0subge1 13597 | The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is greater than or equal to 1. (Contributed by AV, 1-Sep-2025.) (Proof shortened by SN, 18-Sep-2025.) |
| ⊢ (𝐴 ∈ (0..^𝐵) → 1 ≤ (𝐵 − 𝐴)) | ||
| Theorem | elfzo0suble 13598 | The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is less than or equal to the upper bound. (Contributed by AV, 1-Sep-2025.) (Proof shortened by SN, 18-Sep-2025.) |
| ⊢ (𝐴 ∈ (0..^𝐵) → (𝐵 − 𝐴) ≤ 𝐵) | ||
| Theorem | elfzonn0 13599 | A member of a half-open range of nonnegative integers is a nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) | ||
| Theorem | fzonmapblen 13600 | The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less than the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.) |
| ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |