HomeHome Metamath Proof Explorer
Theorem List (p. 136 of 465)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29266)
  Hilbert Space Explorer  Hilbert Space Explorer
(29267-30789)
  Users' Mathboxes  Users' Mathboxes
(30790-46477)
 

Theorem List for Metamath Proof Explorer - 13501-13600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-ceil 13501 The ceiling (least integer greater than or equal to) function. Defined in ISO 80000-2:2009(E) operation 2-9.18 and the "NIST Digital Library of Mathematical Functions" , front introduction, "Common Notations and Definitions" section at http://dlmf.nist.gov/front/introduction#Sx4. See ceilval 13546 for its value, ceilge 13553 and ceilm1lt 13556 for its basic properties, and ceilcl 13550 for its closure. For example, (⌈‘(3 / 2)) = 2 while (⌈‘-(3 / 2)) = -1 (ex-ceil 28798).

The symbol is inspired by the gamma shaped left bracket of the usual notation. (Contributed by David A. Wheeler, 19-May-2015.)

⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
 
Theoremflval 13502* Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
(𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
 
Theoremflcl 13503 The floor (greatest integer) function is an integer (closure law). (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
(𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
 
Theoremreflcl 13504 The floor (greatest integer) function is real. (Contributed by NM, 15-Jul-2008.)
(𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
 
Theoremfllelt 13505 A basic property of the floor (greatest integer) function. (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
(𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1)))
 
Theoremflcld 13506 The floor (greatest integer) function is an integer (closure law). (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (⌊‘𝐴) ∈ ℤ)
 
Theoremflle 13507 A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.)
(𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
 
Theoremflltp1 13508 A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.)
(𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
 
Theoremfllep1 13509 A basic property of the floor (greatest integer) function. (Contributed by Mario Carneiro, 21-May-2016.)
(𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
 
Theoremfraclt1 13510 The fractional part of a real number is less than one. (Contributed by NM, 15-Jul-2008.)
(𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) < 1)
 
Theoremfracle1 13511 The fractional part of a real number is less than or equal to one. (Contributed by Mario Carneiro, 21-May-2016.)
(𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ≤ 1)
 
Theoremfracge0 13512 The fractional part of a real number is nonnegative. (Contributed by NM, 17-Jul-2008.)
(𝐴 ∈ ℝ → 0 ≤ (𝐴 − (⌊‘𝐴)))
 
Theoremflge 13513 The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
 
Theoremfllt 13514 The floor function value is less than the next integer. (Contributed by NM, 24-Feb-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (⌊‘𝐴) < 𝐵))
 
Theoremflflp1 13515 Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) ≤ 𝐵𝐴 < ((⌊‘𝐵) + 1)))
 
Theoremflid 13516 An integer is its own floor. (Contributed by NM, 15-Nov-2004.)
(𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
 
Theoremflidm 13517 The floor function is idempotent. (Contributed by NM, 17-Aug-2008.)
(𝐴 ∈ ℝ → (⌊‘(⌊‘𝐴)) = (⌊‘𝐴))
 
Theoremflidz 13518 A real number equals its floor iff it is an integer. (Contributed by NM, 11-Nov-2008.)
(𝐴 ∈ ℝ → ((⌊‘𝐴) = 𝐴𝐴 ∈ ℤ))
 
Theoremflltnz 13519 The floor of a non-integer real is less than it. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴)
 
Theoremflwordi 13520 Ordering relation for the floor function. (Contributed by NM, 31-Dec-2005.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (⌊‘𝐴) ≤ (⌊‘𝐵))
 
Theoremflword2 13521 Ordering relation for the floor function. (Contributed by Mario Carneiro, 7-Jun-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (⌊‘𝐵) ∈ (ℤ‘(⌊‘𝐴)))
 
Theoremflval2 13522* An alternate way to define the floor function. (Contributed by NM, 16-Nov-2004.)
(𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥))))
 
Theoremflval3 13523* An alternate way to define the floor function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.)
(𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
 
Theoremflbi 13524 A condition equivalent to floor. (Contributed by NM, 11-Mar-2005.) (Revised by Mario Carneiro, 2-Nov-2013.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵𝐴𝐴 < (𝐵 + 1))))
 
Theoremflbi2 13525 A condition equivalent to floor. (Contributed by NM, 15-Aug-2008.)
((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹𝐹 < 1)))
 
Theoremadddivflid 13526 The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴))
 
Theoremico01fl0 13527 The floor of a real number in [0, 1) is 0. Remark: may shorten the proof of modid 13604 or a version of it where the antecedent is membership in an interval. (Contributed by BJ, 29-Jun-2019.)
(𝐴 ∈ (0[,)1) → (⌊‘𝐴) = 0)
 
Theoremflge0nn0 13528 The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
 
Theoremflge1nn 13529 The floor of a number greater than or equal to 1 is a positive integer. (Contributed by NM, 26-Apr-2005.)
((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ)
 
Theoremfldivnn0 13530 The floor function of a division of a nonnegative integer by a positive integer is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℕ0)
 
Theoremrefldivcl 13531 The floor function of a division of a real number by a positive real number is a real number. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ+) → (⌊‘(𝐾 / 𝐿)) ∈ ℝ)
 
Theoremdivfl0 13532 The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (⌊‘(𝐴 / 𝐵)) = 0))
 
Theoremfladdz 13533 An integer can be moved in and out of the floor of a sum. (Contributed by NM, 27-Apr-2005.) (Proof shortened by Fan Zheng, 16-Jun-2016.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁))
 
Theoremflzadd 13534 An integer can be moved in and out of the floor of a sum. (Contributed by NM, 2-Jan-2009.)
((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (⌊‘(𝑁 + 𝐴)) = (𝑁 + (⌊‘𝐴)))
 
Theoremflmulnn0 13535 Move a nonnegative integer in and out of a floor. (Contributed by NM, 2-Jan-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.)
((𝑁 ∈ ℕ0𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
 
Theorembtwnzge0 13536 A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (For the first half see rebtwnz 12675.) (Contributed by NM, 12-Mar-2005.)
(((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁))
 
Theorem2tnp1ge0ge0 13537 Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.)
(𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))
 
Theoremflhalf 13538 Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
(𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))))
 
Theoremfldivle 13539 The floor function of a division of a real number by a positive real number is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ+) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
 
Theoremfldivnn0le 13540 The floor function of a division of a nonnegative integer by a positive integer is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
 
Theoremflltdivnn0lt 13541 The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)))
 
Theoremltdifltdiv 13542 If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 < (𝐶𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵)))
 
Theoremfldiv4p1lem1div2 13543 The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
 
Theoremfldiv4lem1div2uz2 13544 The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.)
(𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
 
Theoremfldiv4lem1div2 13545 The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.)
(𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
 
Theoremceilval 13546 The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.)
(𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴))
 
Theoremdfceil2 13547* Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.)
⌈ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
 
Theoremceilval2 13548* The value of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.)
(𝐴 ∈ ℝ → (⌈‘𝐴) = (𝑦 ∈ ℤ (𝐴𝑦𝑦 < (𝐴 + 1))))
 
Theoremceicl 13549 The ceiling function returns an integer (closure law). (Contributed by Jeff Hankins, 10-Jun-2007.)
(𝐴 ∈ ℝ → -(⌊‘-𝐴) ∈ ℤ)
 
Theoremceilcl 13550 Closure of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.)
(𝐴 ∈ ℝ → (⌈‘𝐴) ∈ ℤ)
 
Theoremceilcld 13551 Closure of the ceiling function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (⌈‘𝐴) ∈ ℤ)
 
Theoremceige 13552 The ceiling of a real number is greater than or equal to that number. (Contributed by Jeff Hankins, 10-Jun-2007.)
(𝐴 ∈ ℝ → 𝐴 ≤ -(⌊‘-𝐴))
 
Theoremceilge 13553 The ceiling of a real number is greater than or equal to that number. (Contributed by AV, 30-Nov-2018.)
(𝐴 ∈ ℝ → 𝐴 ≤ (⌈‘𝐴))
 
Theoremceilged 13554 The ceiling of a real number is greater than or equal to that number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ≤ (⌈‘𝐴))
 
Theoremceim1l 13555 One less than the ceiling of a real number is strictly less than that number. (Contributed by Jeff Hankins, 10-Jun-2007.)
(𝐴 ∈ ℝ → (-(⌊‘-𝐴) − 1) < 𝐴)
 
Theoremceilm1lt 13556 One less than the ceiling of a real number is strictly less than that number. (Contributed by AV, 30-Nov-2018.)
(𝐴 ∈ ℝ → ((⌈‘𝐴) − 1) < 𝐴)
 
Theoremceile 13557 The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jeff Hankins, 10-Jun-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → -(⌊‘-𝐴) ≤ 𝐵)
 
Theoremceille 13558 The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by AV, 30-Nov-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → (⌈‘𝐴) ≤ 𝐵)
 
Theoremceilid 13559 An integer is its own ceiling. (Contributed by AV, 30-Nov-2018.)
(𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴)
 
Theoremceilidz 13560 A real number equals its ceiling iff it is an integer. (Contributed by AV, 30-Nov-2018.)
(𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴))
 
Theoremflleceil 13561 The floor of a real number is less than or equal to its ceiling. (Contributed by AV, 30-Nov-2018.)
(𝐴 ∈ ℝ → (⌊‘𝐴) ≤ (⌈‘𝐴))
 
Theoremfleqceilz 13562 A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018.)
(𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))
 
Theoremquoremz 13563 Quotient and remainder of an integer divided by a positive integer. TODO - is this really needed for anything? Should we use mod to simplify it? Remark (AV): This is a special case of divalg 16100. (Contributed by NM, 14-Aug-2008.)
𝑄 = (⌊‘(𝐴 / 𝐵))    &   𝑅 = (𝐴 − (𝐵 · 𝑄))       ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))
 
Theoremquoremnn0 13564 Quotient and remainder of a nonnegative integer divided by a positive integer. (Contributed by NM, 14-Aug-2008.)
𝑄 = (⌊‘(𝐴 / 𝐵))    &   𝑅 = (𝐴 − (𝐵 · 𝑄))       ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))
 
Theoremquoremnn0ALT 13565 Alternate proof of quoremnn0 13564 not using quoremz 13563. TODO - Keep either quoremnn0ALT 13565 (if we don't keep quoremz 13563) or quoremnn0 13564? (Contributed by NM, 14-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑄 = (⌊‘(𝐴 / 𝐵))    &   𝑅 = (𝐴 − (𝐵 · 𝑄))       ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))
 
Theoremintfrac2 13566 Decompose a real into integer and fractional parts. TODO - should we replace this with intfrac 13594? (Contributed by NM, 16-Aug-2008.)
𝑍 = (⌊‘𝐴)    &   𝐹 = (𝐴𝑍)       (𝐴 ∈ ℝ → (0 ≤ 𝐹𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹)))
 
Theoremintfracq 13567 Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 13566. (Contributed by NM, 16-Aug-2008.)
𝑍 = (⌊‘(𝑀 / 𝑁))    &   𝐹 = ((𝑀 / 𝑁) − 𝑍)       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
 
Theoremfldiv 13568 Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))
 
Theoremfldiv2 13569 Cancellation of an embedded floor of a ratio. Generalization of Equation 2.4 in [CormenLeisersonRivest] p. 33 (where 𝐴 must be an integer). (Contributed by NM, 9-Nov-2008.)
((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘(𝐴 / 𝑀)) / 𝑁)) = (⌊‘(𝐴 / (𝑀 · 𝑁))))
 
Theoremfznnfl 13570 Finite set of sequential integers starting at 1 and ending at a real number. (Contributed by Mario Carneiro, 3-May-2016.)
(𝑁 ∈ ℝ → (𝐾 ∈ (1...(⌊‘𝑁)) ↔ (𝐾 ∈ ℕ ∧ 𝐾𝑁)))
 
Theoremuzsup 13571 An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
 
Theoremioopnfsup 13572 An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
((𝐴 ∈ ℝ*𝐴 ≠ +∞) → sup((𝐴(,)+∞), ℝ*, < ) = +∞)
 
Theoremicopnfsup 13573 An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
((𝐴 ∈ ℝ*𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞)
 
Theoremrpsup 13574 The positive reals are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
sup(ℝ+, ℝ*, < ) = +∞
 
Theoremresup 13575 The real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
sup(ℝ, ℝ*, < ) = +∞
 
Theoremxrsup 13576 The extended real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
sup(ℝ*, ℝ*, < ) = +∞
 
5.6.2  The modulo (remainder) operation
 
Syntaxcmo 13577 Extend class notation with the modulo operation.
class mod
 
Definitiondf-mod 13578* Define the modulo (remainder) operation. See modval 13579 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1 (ex-mod 28799). (Contributed by NM, 10-Nov-2008.)
mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
 
Theoremmodval 13579 The value of the modulo operation. The modulo congruence notation of number theory, 𝐽𝐾 (modulo 𝑁), can be expressed in our notation as (𝐽 mod 𝑁) = (𝐾 mod 𝑁). Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive reals to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) (Contributed by NM, 10-Nov-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
 
Theoremmodvalr 13580 The value of the modulo operation (multiplication in reversed order). (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − ((⌊‘(𝐴 / 𝐵)) · 𝐵)))
 
Theoremmodcl 13581 Closure law for the modulo operation. (Contributed by NM, 10-Nov-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ ℝ)
 
Theoremflpmodeq 13582 Partition of a division into its integer part and the remainder. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴)
 
Theoremmodcld 13583 Closure law for the modulo operation. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴 mod 𝐵) ∈ ℝ)
 
Theoremmod0 13584 𝐴 mod 𝐵 is zero iff 𝐴 is evenly divisible by 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 / 𝐵) ∈ ℤ))
 
Theoremmulmod0 13585 The product of an integer and a positive real number is 0 modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) (Revised by AV, 5-Jul-2020.)
((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · 𝑀) mod 𝑀) = 0)
 
Theoremnegmod0 13586 𝐴 is divisible by 𝐵 iff its negative is. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (-𝐴 mod 𝐵) = 0))
 
Theoremmodge0 13587 The modulo operation is nonnegative. (Contributed by NM, 10-Nov-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝐵))
 
Theoremmodlt 13588 The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵)
 
Theoremmodelico 13589 Modular reduction produces a half-open interval. (Contributed by Stefan O'Rear, 12-Sep-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ (0[,)𝐵))
 
Theoremmoddiffl 13590 Value of the modulo operation rewritten to give two ways of expressing the quotient when "𝐴 is divided by 𝐵 using Euclidean division." Multiplying both sides by 𝐵, this implies that 𝐴 mod 𝐵 differs from 𝐴 by an integer multiple of 𝐵. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 6-Sep-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)))
 
Theoremmoddifz 13591 The modulo operation differs from 𝐴 by an integer multiple of 𝐵. (Contributed by Mario Carneiro, 15-Jul-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ)
 
Theoremmodfrac 13592 The fractional part of a number is the number modulo 1. (Contributed by NM, 11-Nov-2008.)
(𝐴 ∈ ℝ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴)))
 
Theoremflmod 13593 The floor function expressed in terms of the modulo operation. (Contributed by NM, 11-Nov-2008.)
(𝐴 ∈ ℝ → (⌊‘𝐴) = (𝐴 − (𝐴 mod 1)))
 
Theoremintfrac 13594 Break a number into its integer part and its fractional part. (Contributed by NM, 31-Dec-2008.)
(𝐴 ∈ ℝ → 𝐴 = ((⌊‘𝐴) + (𝐴 mod 1)))
 
Theoremzmod10 13595 An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑁 ∈ ℤ → (𝑁 mod 1) = 0)
 
Theoremzmod1congr 13596 Two arbitrary integers are congruent modulo 1, see example 4 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 mod 1) = (𝐵 mod 1))
 
Theoremmodmulnn 13597 Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by NM, 2-Jan-2009.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))
 
Theoremmodvalp1 13598 The value of the modulo operation (expressed with sum of denominator and nominator). (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + 𝐵) − (((⌊‘(𝐴 / 𝐵)) + 1) · 𝐵)) = (𝐴 mod 𝐵))
 
Theoremzmodcl 13599 Closure law for the modulo operation restricted to integers. (Contributed by NM, 27-Nov-2008.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℕ0)
 
Theoremzmodcld 13600 Closure law for the modulo operation restricted to integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℕ)       (𝜑 → (𝐴 mod 𝐵) ∈ ℕ0)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46477
  Copyright terms: Public domain < Previous  Next >