![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zex | Structured version Visualization version GIF version |
Description: The set of integers exists. See also zexALT 12574. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
zex | ⊢ ℤ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11187 | . 2 ⊢ ℂ ∈ V | |
2 | zsscn 12562 | . 2 ⊢ ℤ ⊆ ℂ | |
3 | 1, 2 | ssexi 5321 | 1 ⊢ ℤ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 ℂcc 11104 ℤcz 12554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-cnex 11162 ax-resscn 11163 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-ov 7408 df-neg 11443 df-z 12555 |
This theorem is referenced by: dfuzi 12649 uzval 12820 uzf 12821 fzval 13482 fzf 13484 climz 15489 climaddc1 15575 climmulc2 15577 climsubc1 15578 climsubc2 15579 climlec2 15601 iseraltlem1 15624 divcnvshft 15797 znnen 16151 lcmfval 16554 lcmf0val 16555 odzval 16720 mulgfval 18946 mulgfvalALT 18947 odinf 19425 odhash 19436 zaddablx 19734 zringplusg 21016 zringmulr 21018 zringmpg 21032 zrhval2 21049 zrhpsgnmhm 21128 zfbas 23391 uzrest 23392 tgpmulg2 23589 zdis 24323 sszcld 24324 iscmet3lem3 24798 mbfsup 25172 tayl0 25865 ulmval 25883 ulmpm 25886 ulmf2 25887 dchrptlem2 26757 dchrptlem3 26758 qqhval 32942 dya2iocuni 33270 eulerpartgbij 33359 eulerpartlemmf 33362 ballotlemfval 33476 reprval 33610 divcnvlin 34690 heibor1lem 36665 mzpclall 41450 mzpf 41459 mzpindd 41469 mzpsubst 41471 mzprename 41472 mzpcompact2lem 41474 diophrw 41482 lzenom 41493 diophin 41495 diophun 41496 eq0rabdioph 41499 eqrabdioph 41500 rabdiophlem1 41524 diophren 41536 hashnzfzclim 43066 uzct 43735 oddiadd 46570 2zrngadd 46788 2zrngmul 46796 irinitoringc 46920 zlmodzxzldeplem1 47134 digfval 47236 |
Copyright terms: Public domain | W3C validator |