| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zex | Structured version Visualization version GIF version | ||
| Description: The set of integers exists. See also zexALT 12549. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11149 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 12537 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 5277 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ℂcc 11066 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-neg 11408 df-z 12530 |
| This theorem is referenced by: dfuzi 12625 uzval 12795 uzf 12796 fzval 13470 fzf 13472 climz 15515 climaddc1 15601 climmulc2 15603 climsubc1 15604 climsubc2 15605 climlec2 15625 iseraltlem1 15648 divcnvshft 15821 znnen 16180 lcmfval 16591 lcmf0val 16592 odzval 16762 mulgfval 19001 mulgfvalALT 19002 odinf 19493 odhash 19504 zaddablx 19802 zringplusg 21364 zringmulr 21367 zringmpg 21381 irinitoringc 21389 pzriprnglem13 21403 pzriprnglem14 21404 zrhval2 21418 zrhpsgnmhm 21493 zfbas 23783 uzrest 23784 tgpmulg2 23981 zdis 24705 sszcld 24706 iscmet3lem3 25190 mbfsup 25565 tayl0 26269 ulmval 26289 ulmpm 26292 ulmf2 26293 dchrptlem2 27176 dchrptlem3 27177 elrgspnlem1 33193 elrgspnlem2 33194 elrgspnlem3 33195 elrgspnlem4 33196 elrgspn 33197 elrgspnsubrunlem1 33198 elrgspnsubrun 33200 qqhval 33962 dya2iocuni 34274 eulerpartgbij 34363 eulerpartlemmf 34366 ballotlemfval 34481 reprval 34601 divcnvlin 35720 heibor1lem 37803 aks6d1c6isolem2 42163 mzpclall 42715 mzpf 42724 mzpindd 42734 mzpsubst 42736 mzprename 42737 mzpcompact2lem 42739 diophrw 42747 lzenom 42758 diophin 42760 diophun 42761 eq0rabdioph 42764 eqrabdioph 42765 rabdiophlem1 42789 diophren 42801 hashnzfzclim 44311 uzct 45057 oddiadd 48162 2zrngadd 48231 2zrngmul 48239 zlmodzxzldeplem1 48489 digfval 48586 |
| Copyright terms: Public domain | W3C validator |