| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zex | Structured version Visualization version GIF version | ||
| Description: The set of integers exists. See also zexALT 12616. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11218 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 12604 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 5302 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3463 ℂcc 11135 ℤcz 12596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-cnex 11193 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-neg 11477 df-z 12597 |
| This theorem is referenced by: dfuzi 12692 uzval 12862 uzf 12863 fzval 13531 fzf 13533 climz 15567 climaddc1 15653 climmulc2 15655 climsubc1 15656 climsubc2 15657 climlec2 15677 iseraltlem1 15700 divcnvshft 15873 znnen 16230 lcmfval 16640 lcmf0val 16641 odzval 16811 mulgfval 19056 mulgfvalALT 19057 odinf 19549 odhash 19560 zaddablx 19858 zringplusg 21427 zringmulr 21430 zringmpg 21444 irinitoringc 21452 pzriprnglem13 21466 pzriprnglem14 21467 zrhval2 21481 zrhpsgnmhm 21556 zfbas 23850 uzrest 23851 tgpmulg2 24048 zdis 24774 sszcld 24775 iscmet3lem3 25260 mbfsup 25635 tayl0 26339 ulmval 26359 ulmpm 26362 ulmf2 26363 dchrptlem2 27245 dchrptlem3 27246 elrgspnlem1 33185 elrgspnlem2 33186 elrgspnlem3 33187 elrgspnlem4 33188 elrgspn 33189 elrgspnsubrunlem1 33190 elrgspnsubrun 33192 qqhval 33932 dya2iocuni 34244 eulerpartgbij 34333 eulerpartlemmf 34336 ballotlemfval 34451 reprval 34584 divcnvlin 35692 heibor1lem 37775 aks6d1c6isolem2 42135 mzpclall 42701 mzpf 42710 mzpindd 42720 mzpsubst 42722 mzprename 42723 mzpcompact2lem 42725 diophrw 42733 lzenom 42744 diophin 42746 diophun 42747 eq0rabdioph 42750 eqrabdioph 42751 rabdiophlem1 42775 diophren 42787 hashnzfzclim 44298 uzct 45025 oddiadd 48048 2zrngadd 48117 2zrngmul 48125 zlmodzxzldeplem1 48375 digfval 48476 |
| Copyright terms: Public domain | W3C validator |