| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zex | Structured version Visualization version GIF version | ||
| Description: The set of integers exists. See also zexALT 12525. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11125 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 12513 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 5272 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ℂcc 11042 ℤcz 12505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-neg 11384 df-z 12506 |
| This theorem is referenced by: dfuzi 12601 uzval 12771 uzf 12772 fzval 13446 fzf 13448 climz 15491 climaddc1 15577 climmulc2 15579 climsubc1 15580 climsubc2 15581 climlec2 15601 iseraltlem1 15624 divcnvshft 15797 znnen 16156 lcmfval 16567 lcmf0val 16568 odzval 16738 mulgfval 18977 mulgfvalALT 18978 odinf 19469 odhash 19480 zaddablx 19778 zringplusg 21340 zringmulr 21343 zringmpg 21357 irinitoringc 21365 pzriprnglem13 21379 pzriprnglem14 21380 zrhval2 21394 zrhpsgnmhm 21469 zfbas 23759 uzrest 23760 tgpmulg2 23957 zdis 24681 sszcld 24682 iscmet3lem3 25166 mbfsup 25541 tayl0 26245 ulmval 26265 ulmpm 26268 ulmf2 26269 dchrptlem2 27152 dchrptlem3 27153 elrgspnlem1 33166 elrgspnlem2 33167 elrgspnlem3 33168 elrgspnlem4 33169 elrgspn 33170 elrgspnsubrunlem1 33171 elrgspnsubrun 33173 qqhval 33935 dya2iocuni 34247 eulerpartgbij 34336 eulerpartlemmf 34339 ballotlemfval 34454 reprval 34574 divcnvlin 35693 heibor1lem 37776 aks6d1c6isolem2 42136 mzpclall 42688 mzpf 42697 mzpindd 42707 mzpsubst 42709 mzprename 42710 mzpcompact2lem 42712 diophrw 42720 lzenom 42731 diophin 42733 diophun 42734 eq0rabdioph 42737 eqrabdioph 42738 rabdiophlem1 42762 diophren 42774 hashnzfzclim 44284 uzct 45030 oddiadd 48135 2zrngadd 48204 2zrngmul 48212 zlmodzxzldeplem1 48462 digfval 48559 |
| Copyright terms: Public domain | W3C validator |