Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zex | Structured version Visualization version GIF version |
Description: The set of integers exists. See also zexALT 12269. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
zex | ⊢ ℤ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10883 | . 2 ⊢ ℂ ∈ V | |
2 | zsscn 12257 | . 2 ⊢ ℤ ⊆ ℂ | |
3 | 1, 2 | ssexi 5241 | 1 ⊢ ℤ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ℂcc 10800 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-neg 11138 df-z 12250 |
This theorem is referenced by: dfuzi 12341 uzval 12513 uzf 12514 fzval 13170 fzf 13172 climz 15186 climaddc1 15272 climmulc2 15274 climsubc1 15275 climsubc2 15276 climlec2 15298 iseraltlem1 15321 divcnvshft 15495 znnen 15849 lcmfval 16254 lcmf0val 16255 odzval 16420 mulgfval 18617 mulgfvalALT 18618 odinf 19085 odhash 19094 zaddablx 19388 zringplusg 20589 zringmulr 20591 zringmpg 20605 zrhval2 20622 zrhpsgnmhm 20701 zfbas 22955 uzrest 22956 tgpmulg2 23153 zdis 23885 sszcld 23886 iscmet3lem3 24359 mbfsup 24733 tayl0 25426 ulmval 25444 ulmpm 25447 ulmf2 25448 dchrptlem2 26318 dchrptlem3 26319 qqhval 31824 dya2iocuni 32150 eulerpartgbij 32239 eulerpartlemmf 32242 ballotlemfval 32356 reprval 32490 divcnvlin 33604 heibor1lem 35894 mzpclall 40465 mzpf 40474 mzpindd 40484 mzpsubst 40486 mzprename 40487 mzpcompact2lem 40489 diophrw 40497 lzenom 40508 diophin 40510 diophun 40511 eq0rabdioph 40514 eqrabdioph 40515 rabdiophlem1 40539 diophren 40551 hashnzfzclim 41829 uzct 42500 oddiadd 45256 2zrngadd 45383 2zrngmul 45391 irinitoringc 45515 zlmodzxzldeplem1 45729 digfval 45831 |
Copyright terms: Public domain | W3C validator |