| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zex | Structured version Visualization version GIF version | ||
| Description: The set of integers exists. See also zexALT 12556. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11156 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 12544 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 5280 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ℂcc 11073 ℤcz 12536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-neg 11415 df-z 12537 |
| This theorem is referenced by: dfuzi 12632 uzval 12802 uzf 12803 fzval 13477 fzf 13479 climz 15522 climaddc1 15608 climmulc2 15610 climsubc1 15611 climsubc2 15612 climlec2 15632 iseraltlem1 15655 divcnvshft 15828 znnen 16187 lcmfval 16598 lcmf0val 16599 odzval 16769 mulgfval 19008 mulgfvalALT 19009 odinf 19500 odhash 19511 zaddablx 19809 zringplusg 21371 zringmulr 21374 zringmpg 21388 irinitoringc 21396 pzriprnglem13 21410 pzriprnglem14 21411 zrhval2 21425 zrhpsgnmhm 21500 zfbas 23790 uzrest 23791 tgpmulg2 23988 zdis 24712 sszcld 24713 iscmet3lem3 25197 mbfsup 25572 tayl0 26276 ulmval 26296 ulmpm 26299 ulmf2 26300 dchrptlem2 27183 dchrptlem3 27184 elrgspnlem1 33200 elrgspnlem2 33201 elrgspnlem3 33202 elrgspnlem4 33203 elrgspn 33204 elrgspnsubrunlem1 33205 elrgspnsubrun 33207 qqhval 33969 dya2iocuni 34281 eulerpartgbij 34370 eulerpartlemmf 34373 ballotlemfval 34488 reprval 34608 divcnvlin 35727 heibor1lem 37810 aks6d1c6isolem2 42170 mzpclall 42722 mzpf 42731 mzpindd 42741 mzpsubst 42743 mzprename 42744 mzpcompact2lem 42746 diophrw 42754 lzenom 42765 diophin 42767 diophun 42768 eq0rabdioph 42771 eqrabdioph 42772 rabdiophlem1 42796 diophren 42808 hashnzfzclim 44318 uzct 45064 oddiadd 48166 2zrngadd 48235 2zrngmul 48243 zlmodzxzldeplem1 48493 digfval 48590 |
| Copyright terms: Public domain | W3C validator |