| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zex | Structured version Visualization version GIF version | ||
| Description: The set of integers exists. See also zexALT 12491. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11090 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 12479 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 5261 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 ℂcc 11007 ℤcz 12471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-neg 11350 df-z 12472 |
| This theorem is referenced by: dfuzi 12567 uzval 12737 uzf 12738 fzval 13412 fzf 13414 climz 15456 climaddc1 15542 climmulc2 15544 climsubc1 15545 climsubc2 15546 climlec2 15566 iseraltlem1 15589 divcnvshft 15762 znnen 16121 lcmfval 16532 lcmf0val 16533 odzval 16703 mulgfval 18948 mulgfvalALT 18949 odinf 19442 odhash 19453 zaddablx 19751 zringplusg 21361 zringmulr 21364 zringmpg 21378 irinitoringc 21386 pzriprnglem13 21400 pzriprnglem14 21401 zrhval2 21415 zrhpsgnmhm 21491 zfbas 23781 uzrest 23782 tgpmulg2 23979 zdis 24703 sszcld 24704 iscmet3lem3 25188 mbfsup 25563 tayl0 26267 ulmval 26287 ulmpm 26290 ulmf2 26291 dchrptlem2 27174 dchrptlem3 27175 elrgspnlem1 33182 elrgspnlem2 33183 elrgspnlem3 33184 elrgspnlem4 33185 elrgspn 33186 elrgspnsubrunlem1 33187 elrgspnsubrun 33189 qqhval 33939 dya2iocuni 34251 eulerpartgbij 34340 eulerpartlemmf 34343 ballotlemfval 34458 reprval 34578 divcnvlin 35706 heibor1lem 37789 aks6d1c6isolem2 42148 mzpclall 42700 mzpf 42709 mzpindd 42719 mzpsubst 42721 mzprename 42722 mzpcompact2lem 42724 diophrw 42732 lzenom 42743 diophin 42745 diophun 42746 eq0rabdioph 42749 eqrabdioph 42750 rabdiophlem1 42774 diophren 42786 hashnzfzclim 44295 uzct 45041 oddiadd 48158 2zrngadd 48227 2zrngmul 48235 zlmodzxzldeplem1 48485 digfval 48582 |
| Copyright terms: Public domain | W3C validator |