| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zex | Structured version Visualization version GIF version | ||
| Description: The set of integers exists. See also zexALT 12608. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11210 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 12596 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 5292 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ℂcc 11127 ℤcz 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-neg 11469 df-z 12589 |
| This theorem is referenced by: dfuzi 12684 uzval 12854 uzf 12855 fzval 13526 fzf 13528 climz 15565 climaddc1 15651 climmulc2 15653 climsubc1 15654 climsubc2 15655 climlec2 15675 iseraltlem1 15698 divcnvshft 15871 znnen 16230 lcmfval 16640 lcmf0val 16641 odzval 16811 mulgfval 19052 mulgfvalALT 19053 odinf 19544 odhash 19555 zaddablx 19853 zringplusg 21415 zringmulr 21418 zringmpg 21432 irinitoringc 21440 pzriprnglem13 21454 pzriprnglem14 21455 zrhval2 21469 zrhpsgnmhm 21544 zfbas 23834 uzrest 23835 tgpmulg2 24032 zdis 24756 sszcld 24757 iscmet3lem3 25242 mbfsup 25617 tayl0 26321 ulmval 26341 ulmpm 26344 ulmf2 26345 dchrptlem2 27228 dchrptlem3 27229 elrgspnlem1 33237 elrgspnlem2 33238 elrgspnlem3 33239 elrgspnlem4 33240 elrgspn 33241 elrgspnsubrunlem1 33242 elrgspnsubrun 33244 qqhval 34003 dya2iocuni 34315 eulerpartgbij 34404 eulerpartlemmf 34407 ballotlemfval 34522 reprval 34642 divcnvlin 35750 heibor1lem 37833 aks6d1c6isolem2 42188 mzpclall 42750 mzpf 42759 mzpindd 42769 mzpsubst 42771 mzprename 42772 mzpcompact2lem 42774 diophrw 42782 lzenom 42793 diophin 42795 diophun 42796 eq0rabdioph 42799 eqrabdioph 42800 rabdiophlem1 42824 diophren 42836 hashnzfzclim 44346 uzct 45087 oddiadd 48149 2zrngadd 48218 2zrngmul 48226 zlmodzxzldeplem1 48476 digfval 48577 |
| Copyright terms: Public domain | W3C validator |