| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zex | Structured version Visualization version GIF version | ||
| Description: The set of integers exists. See also zexALT 12488. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11087 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 12476 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 5258 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ℂcc 11004 ℤcz 12468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-neg 11347 df-z 12469 |
| This theorem is referenced by: dfuzi 12564 uzval 12734 uzf 12735 fzval 13409 fzf 13411 climz 15456 climaddc1 15542 climmulc2 15544 climsubc1 15545 climsubc2 15546 climlec2 15566 iseraltlem1 15589 divcnvshft 15762 znnen 16121 lcmfval 16532 lcmf0val 16533 odzval 16703 ex-chn2 18544 mulgfval 18982 mulgfvalALT 18983 odinf 19475 odhash 19486 zaddablx 19784 zringplusg 21391 zringmulr 21394 zringmpg 21408 irinitoringc 21416 pzriprnglem13 21430 pzriprnglem14 21431 zrhval2 21445 zrhpsgnmhm 21521 zfbas 23811 uzrest 23812 tgpmulg2 24009 zdis 24732 sszcld 24733 iscmet3lem3 25217 mbfsup 25592 tayl0 26296 ulmval 26316 ulmpm 26319 ulmf2 26320 dchrptlem2 27203 dchrptlem3 27204 elrgspnlem1 33209 elrgspnlem2 33210 elrgspnlem3 33211 elrgspnlem4 33212 elrgspn 33213 elrgspnsubrunlem1 33214 elrgspnsubrun 33216 esplympl 33588 qqhval 33985 dya2iocuni 34296 eulerpartgbij 34385 eulerpartlemmf 34388 ballotlemfval 34503 reprval 34623 divcnvlin 35777 heibor1lem 37857 aks6d1c6isolem2 42216 mzpclall 42768 mzpf 42777 mzpindd 42787 mzpsubst 42789 mzprename 42790 mzpcompact2lem 42792 diophrw 42800 lzenom 42811 diophin 42813 diophun 42814 eq0rabdioph 42817 eqrabdioph 42818 rabdiophlem1 42842 diophren 42854 hashnzfzclim 44363 uzct 45108 oddiadd 48213 2zrngadd 48282 2zrngmul 48290 zlmodzxzldeplem1 48540 digfval 48637 |
| Copyright terms: Public domain | W3C validator |