![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zex | Structured version Visualization version GIF version |
Description: The set of integers exists. See also zexALT 12631. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
zex | ⊢ ℤ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11234 | . 2 ⊢ ℂ ∈ V | |
2 | zsscn 12619 | . 2 ⊢ ℤ ⊆ ℂ | |
3 | 1, 2 | ssexi 5328 | 1 ⊢ ℤ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 ℂcc 11151 ℤcz 12611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-neg 11493 df-z 12612 |
This theorem is referenced by: dfuzi 12707 uzval 12878 uzf 12879 fzval 13546 fzf 13548 climz 15582 climaddc1 15668 climmulc2 15670 climsubc1 15671 climsubc2 15672 climlec2 15692 iseraltlem1 15715 divcnvshft 15888 znnen 16245 lcmfval 16655 lcmf0val 16656 odzval 16825 mulgfval 19100 mulgfvalALT 19101 odinf 19596 odhash 19607 zaddablx 19905 zringplusg 21483 zringmulr 21486 zringmpg 21500 irinitoringc 21508 pzriprnglem13 21522 pzriprnglem14 21523 zrhval2 21537 zrhpsgnmhm 21620 zfbas 23920 uzrest 23921 tgpmulg2 24118 zdis 24852 sszcld 24853 iscmet3lem3 25338 mbfsup 25713 tayl0 26418 ulmval 26438 ulmpm 26441 ulmf2 26442 dchrptlem2 27324 dchrptlem3 27325 elrgspnlem1 33232 elrgspnlem2 33233 elrgspnlem3 33234 elrgspnlem4 33235 qqhval 33935 dya2iocuni 34265 eulerpartgbij 34354 eulerpartlemmf 34357 ballotlemfval 34471 reprval 34604 divcnvlin 35713 heibor1lem 37796 aks6d1c6isolem2 42157 mzpclall 42715 mzpf 42724 mzpindd 42734 mzpsubst 42736 mzprename 42737 mzpcompact2lem 42739 diophrw 42747 lzenom 42758 diophin 42760 diophun 42761 eq0rabdioph 42764 eqrabdioph 42765 rabdiophlem1 42789 diophren 42801 hashnzfzclim 44318 uzct 45003 oddiadd 48018 2zrngadd 48087 2zrngmul 48095 zlmodzxzldeplem1 48346 digfval 48447 |
Copyright terms: Public domain | W3C validator |