![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zex | Structured version Visualization version GIF version |
Description: The set of integers exists. See also zexALT 12659. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
zex | ⊢ ℤ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11265 | . 2 ⊢ ℂ ∈ V | |
2 | zsscn 12647 | . 2 ⊢ ℤ ⊆ ℂ | |
3 | 1, 2 | ssexi 5340 | 1 ⊢ ℤ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ℂcc 11182 ℤcz 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-neg 11523 df-z 12640 |
This theorem is referenced by: dfuzi 12734 uzval 12905 uzf 12906 fzval 13569 fzf 13571 climz 15595 climaddc1 15681 climmulc2 15683 climsubc1 15684 climsubc2 15685 climlec2 15707 iseraltlem1 15730 divcnvshft 15903 znnen 16260 lcmfval 16668 lcmf0val 16669 odzval 16838 mulgfval 19109 mulgfvalALT 19110 odinf 19605 odhash 19616 zaddablx 19914 zringplusg 21488 zringmulr 21491 zringmpg 21505 irinitoringc 21513 pzriprnglem13 21527 pzriprnglem14 21528 zrhval2 21542 zrhpsgnmhm 21625 zfbas 23925 uzrest 23926 tgpmulg2 24123 zdis 24857 sszcld 24858 iscmet3lem3 25343 mbfsup 25718 tayl0 26421 ulmval 26441 ulmpm 26444 ulmf2 26445 dchrptlem2 27327 dchrptlem3 27328 qqhval 33920 dya2iocuni 34248 eulerpartgbij 34337 eulerpartlemmf 34340 ballotlemfval 34454 reprval 34587 divcnvlin 35695 heibor1lem 37769 aks6d1c6isolem2 42132 mzpclall 42683 mzpf 42692 mzpindd 42702 mzpsubst 42704 mzprename 42705 mzpcompact2lem 42707 diophrw 42715 lzenom 42726 diophin 42728 diophun 42729 eq0rabdioph 42732 eqrabdioph 42733 rabdiophlem1 42757 diophren 42769 hashnzfzclim 44291 uzct 44965 oddiadd 47897 2zrngadd 47966 2zrngmul 47974 zlmodzxzldeplem1 48229 digfval 48331 |
Copyright terms: Public domain | W3C validator |