| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfz1 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) |
| Ref | Expression |
|---|---|
| elfz1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzval 13531 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)}) | |
| 2 | 1 | eleq2d 2819 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)})) |
| 3 | breq2 5127 | . . . . 5 ⊢ (𝑗 = 𝐾 → (𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝐾)) | |
| 4 | breq1 5126 | . . . . 5 ⊢ (𝑗 = 𝐾 → (𝑗 ≤ 𝑁 ↔ 𝐾 ≤ 𝑁)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑗 = 𝐾 → ((𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 6 | 5 | elrab 3675 | . . 3 ⊢ (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)} ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 7 | 3anass 1094 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)} ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
| 9 | 2, 8 | bitrdi 287 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {crab 3419 class class class wbr 5123 (class class class)co 7413 ≤ cle 11278 ℤcz 12596 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-cnex 11193 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-neg 11477 df-z 12597 df-fz 13530 |
| This theorem is referenced by: elfz 13535 elfz2 13536 fzen 13563 fzaddel 13580 fzadd2 13581 elfzm11 13617 fznn0 13641 phicl2 16787 nndiffz1 32727 fzmul 37707 bccl2d 41951 lcmineqlem11 41999 fz1eqin 42743 jm2.27dlem2 42985 fzunt 43430 fzuntd 43431 fzunt1d 43432 fzuntgd 43433 iblspltprt 45945 itgspltprt 45951 natglobalincr 46849 |
| Copyright terms: Public domain | W3C validator |