MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1 Structured version   Visualization version   GIF version

Theorem elfz1 13226
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
elfz1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))

Proof of Theorem elfz1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fzval 13223 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)})
21eleq2d 2825 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)}))
3 breq2 5082 . . . . 5 (𝑗 = 𝐾 → (𝑀𝑗𝑀𝐾))
4 breq1 5081 . . . . 5 (𝑗 = 𝐾 → (𝑗𝑁𝐾𝑁))
53, 4anbi12d 630 . . . 4 (𝑗 = 𝐾 → ((𝑀𝑗𝑗𝑁) ↔ (𝑀𝐾𝐾𝑁)))
65elrab 3625 . . 3 (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)} ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
7 3anass 1093 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
86, 7bitr4i 277 . 2 (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)} ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁))
92, 8bitrdi 286 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  {crab 3069   class class class wbr 5078  (class class class)co 7268  cle 10994  cz 12302  ...cfz 13221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-cnex 10911  ax-resscn 10912
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-neg 11191  df-z 12303  df-fz 13222
This theorem is referenced by:  elfz  13227  elfz2  13228  fzen  13255  fzaddel  13272  fzadd2  13273  elfzm11  13309  fznn0  13330  phicl2  16450  nndiffz1  31086  fzmul  35878  bccl2d  39980  lcmineqlem11  40027  fz1eqin  40571  jm2.27dlem2  40812  iblspltprt  43468  itgspltprt  43474
  Copyright terms: Public domain W3C validator