| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfz1 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) |
| Ref | Expression |
|---|---|
| elfz1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzval 13477 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)}) | |
| 2 | 1 | eleq2d 2815 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)})) |
| 3 | breq2 5114 | . . . . 5 ⊢ (𝑗 = 𝐾 → (𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝐾)) | |
| 4 | breq1 5113 | . . . . 5 ⊢ (𝑗 = 𝐾 → (𝑗 ≤ 𝑁 ↔ 𝐾 ≤ 𝑁)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑗 = 𝐾 → ((𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 6 | 5 | elrab 3662 | . . 3 ⊢ (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)} ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 7 | 3anass 1094 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)} ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
| 9 | 2, 8 | bitrdi 287 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 class class class wbr 5110 (class class class)co 7390 ≤ cle 11216 ℤcz 12536 ...cfz 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-neg 11415 df-z 12537 df-fz 13476 |
| This theorem is referenced by: elfz 13481 elfz2 13482 fzen 13509 fzaddel 13526 fzadd2 13527 elfzm11 13563 fznn0 13587 phicl2 16745 nndiffz1 32716 fzmul 37742 bccl2d 41986 lcmineqlem11 42034 fz1eqin 42764 jm2.27dlem2 43006 fzunt 43451 fzuntd 43452 fzunt1d 43453 fzuntgd 43454 iblspltprt 45978 itgspltprt 45984 natglobalincr 46882 |
| Copyright terms: Public domain | W3C validator |