MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1 Structured version   Visualization version   GIF version

Theorem elfz1 13480
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
elfz1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))

Proof of Theorem elfz1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fzval 13477 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)})
21eleq2d 2815 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)}))
3 breq2 5114 . . . . 5 (𝑗 = 𝐾 → (𝑀𝑗𝑀𝐾))
4 breq1 5113 . . . . 5 (𝑗 = 𝐾 → (𝑗𝑁𝐾𝑁))
53, 4anbi12d 632 . . . 4 (𝑗 = 𝐾 → ((𝑀𝑗𝑗𝑁) ↔ (𝑀𝐾𝐾𝑁)))
65elrab 3662 . . 3 (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)} ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
7 3anass 1094 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
86, 7bitr4i 278 . 2 (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)} ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁))
92, 8bitrdi 287 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3408   class class class wbr 5110  (class class class)co 7390  cle 11216  cz 12536  ...cfz 13475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-neg 11415  df-z 12537  df-fz 13476
This theorem is referenced by:  elfz  13481  elfz2  13482  fzen  13509  fzaddel  13526  fzadd2  13527  elfzm11  13563  fznn0  13587  phicl2  16745  nndiffz1  32716  fzmul  37742  bccl2d  41986  lcmineqlem11  42034  fz1eqin  42764  jm2.27dlem2  43006  fzunt  43451  fzuntd  43452  fzunt1d  43453  fzuntgd  43454  iblspltprt  45978  itgspltprt  45984  natglobalincr  46882
  Copyright terms: Public domain W3C validator