| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfz1 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) |
| Ref | Expression |
|---|---|
| elfz1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzval 13409 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)}) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)})) |
| 3 | breq2 5093 | . . . . 5 ⊢ (𝑗 = 𝐾 → (𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝐾)) | |
| 4 | breq1 5092 | . . . . 5 ⊢ (𝑗 = 𝐾 → (𝑗 ≤ 𝑁 ↔ 𝐾 ≤ 𝑁)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑗 = 𝐾 → ((𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 6 | 5 | elrab 3642 | . . 3 ⊢ (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)} ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 7 | 3anass 1094 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)} ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
| 9 | 2, 8 | bitrdi 287 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 class class class wbr 5089 (class class class)co 7346 ≤ cle 11147 ℤcz 12468 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-neg 11347 df-z 12469 df-fz 13408 |
| This theorem is referenced by: elfz 13413 elfz2 13414 fzen 13441 fzaddel 13458 fzadd2 13459 elfzm11 13495 fznn0 13519 phicl2 16679 nndiffz1 32769 fzmul 37780 bccl2d 42083 lcmineqlem11 42131 fz1eqin 42861 jm2.27dlem2 43102 fzunt 43547 fzuntd 43548 fzunt1d 43549 fzuntgd 43550 iblspltprt 46070 itgspltprt 46076 natglobalincr 46974 |
| Copyright terms: Public domain | W3C validator |