MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1 Structured version   Visualization version   GIF version

Theorem elfz1 13572
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
elfz1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))

Proof of Theorem elfz1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fzval 13569 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)})
21eleq2d 2830 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)}))
3 breq2 5170 . . . . 5 (𝑗 = 𝐾 → (𝑀𝑗𝑀𝐾))
4 breq1 5169 . . . . 5 (𝑗 = 𝐾 → (𝑗𝑁𝐾𝑁))
53, 4anbi12d 631 . . . 4 (𝑗 = 𝐾 → ((𝑀𝑗𝑗𝑁) ↔ (𝑀𝐾𝐾𝑁)))
65elrab 3708 . . 3 (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)} ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
7 3anass 1095 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
86, 7bitr4i 278 . 2 (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)} ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁))
92, 8bitrdi 287 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  (class class class)co 7448  cle 11325  cz 12639  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-neg 11523  df-z 12640  df-fz 13568
This theorem is referenced by:  elfz  13573  elfz2  13574  fzen  13601  fzaddel  13618  fzadd2  13619  elfzm11  13655  fznn0  13676  phicl2  16815  nndiffz1  32791  fzmul  37701  bccl2d  41948  lcmineqlem11  41996  fz1eqin  42725  jm2.27dlem2  42967  fzunt  43417  fzuntd  43418  fzunt1d  43419  fzuntgd  43420  iblspltprt  45894  itgspltprt  45900  natglobalincr  46796
  Copyright terms: Public domain W3C validator