| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfz1 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) |
| Ref | Expression |
|---|---|
| elfz1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzval 13531 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)}) | |
| 2 | 1 | eleq2d 2821 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)})) |
| 3 | breq2 5128 | . . . . 5 ⊢ (𝑗 = 𝐾 → (𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝐾)) | |
| 4 | breq1 5127 | . . . . 5 ⊢ (𝑗 = 𝐾 → (𝑗 ≤ 𝑁 ↔ 𝐾 ≤ 𝑁)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑗 = 𝐾 → ((𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 6 | 5 | elrab 3676 | . . 3 ⊢ (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)} ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 7 | 3anass 1094 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)} ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
| 9 | 2, 8 | bitrdi 287 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3420 class class class wbr 5124 (class class class)co 7410 ≤ cle 11275 ℤcz 12593 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-neg 11474 df-z 12594 df-fz 13530 |
| This theorem is referenced by: elfz 13535 elfz2 13536 fzen 13563 fzaddel 13580 fzadd2 13581 elfzm11 13617 fznn0 13641 phicl2 16792 nndiffz1 32768 fzmul 37770 bccl2d 42009 lcmineqlem11 42057 fz1eqin 42759 jm2.27dlem2 43001 fzunt 43446 fzuntd 43447 fzunt1d 43448 fzuntgd 43449 iblspltprt 45969 itgspltprt 45975 natglobalincr 46873 |
| Copyright terms: Public domain | W3C validator |