Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hausgraph Structured version   Visualization version   GIF version

Theorem hausgraph 41037
Description: The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
hausgraph ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾)))

Proof of Theorem hausgraph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 f1stres 7855 . . . . . . . . 9 (1st ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐽
2 ffn 6600 . . . . . . . . 9 ((1st ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐽 → (1st ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾))
31, 2ax-mp 5 . . . . . . . 8 (1st ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾)
4 fvco2 6865 . . . . . . . 8 (((1st ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)))
53, 4mpan 687 . . . . . . 7 (𝑎 ∈ ( 𝐽 × 𝐾) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)))
65adantl 482 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)))
7 fvres 6793 . . . . . . . 8 (𝑎 ∈ ( 𝐽 × 𝐾) → ((1st ↾ ( 𝐽 × 𝐾))‘𝑎) = (1st𝑎))
87fveq2d 6778 . . . . . . 7 (𝑎 ∈ ( 𝐽 × 𝐾) → (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)) = (𝐹‘(1st𝑎)))
98adantl 482 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)) = (𝐹‘(1st𝑎)))
106, 9eqtrd 2778 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘(1st𝑎)))
11 fvres 6793 . . . . . 6 (𝑎 ∈ ( 𝐽 × 𝐾) → ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎) = (2nd𝑎))
1211adantl 482 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎) = (2nd𝑎))
1310, 12eqeq12d 2754 . . . 4 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → (((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎) ↔ (𝐹‘(1st𝑎)) = (2nd𝑎)))
1413rabbidva 3413 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → {𝑎 ∈ ( 𝐽 × 𝐾) ∣ ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎)} = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ (𝐹‘(1st𝑎)) = (2nd𝑎)})
15 eqid 2738 . . . . . . . 8 𝐽 = 𝐽
16 eqid 2738 . . . . . . . 8 𝐾 = 𝐾
1715, 16cnf 22397 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
1817adantl 482 . . . . . 6 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽 𝐾)
19 fco 6624 . . . . . 6 ((𝐹: 𝐽 𝐾 ∧ (1st ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐽) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))):( 𝐽 × 𝐾)⟶ 𝐾)
2018, 1, 19sylancl 586 . . . . 5 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))):( 𝐽 × 𝐾)⟶ 𝐾)
2120ffnd 6601 . . . 4 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) Fn ( 𝐽 × 𝐾))
22 f2ndres 7856 . . . . 5 (2nd ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐾
23 ffn 6600 . . . . 5 ((2nd ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐾 → (2nd ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾))
2422, 23ax-mp 5 . . . 4 (2nd ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾)
25 fndmin 6922 . . . 4 (((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) Fn ( 𝐽 × 𝐾) ∧ (2nd ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾)) → dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))) = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎)})
2621, 24, 25sylancl 586 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))) = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎)})
27 fgraphxp 41036 . . . 4 (𝐹: 𝐽 𝐾𝐹 = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ (𝐹‘(1st𝑎)) = (2nd𝑎)})
2818, 27syl 17 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ (𝐹‘(1st𝑎)) = (2nd𝑎)})
2914, 26, 283eqtr4rd 2789 . 2 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 = dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))))
30 simpl 483 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Haus)
31 cntop1 22391 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
3231adantl 482 . . . . . 6 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3315toptopon 22066 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
3432, 33sylib 217 . . . . 5 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘ 𝐽))
35 haustop 22482 . . . . . . 7 (𝐾 ∈ Haus → 𝐾 ∈ Top)
3630, 35syl 17 . . . . . 6 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3716toptopon 22066 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3836, 37sylib 217 . . . . 5 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘ 𝐾))
39 tx1cn 22760 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (1st ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
4034, 38, 39syl2anc 584 . . . 4 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (1st ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
41 cnco 22417 . . . 4 (((1st ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
4240, 41sylancom 588 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
43 tx2cn 22761 . . . 4 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (2nd ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
4434, 38, 43syl2anc 584 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (2nd ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
4530, 42, 44hauseqlcld 22797 . 2 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))) ∈ (Clsd‘(𝐽 ×t 𝐾)))
4629, 45eqeltrd 2839 1 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  cin 3886   cuni 4839   × cxp 5587  dom cdm 5589  cres 5591  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  Topctop 22042  TopOnctopon 22059  Clsdccld 22167   Cn ccn 22375  Hauscha 22459   ×t ctx 22711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cld 22170  df-cn 22378  df-haus 22466  df-tx 22713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator