Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hausgraph Structured version   Visualization version   GIF version

Theorem hausgraph 39832
Description: The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
hausgraph ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾)))

Proof of Theorem hausgraph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 f1stres 7713 . . . . . . . . 9 (1st ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐽
2 ffn 6514 . . . . . . . . 9 ((1st ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐽 → (1st ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾))
31, 2ax-mp 5 . . . . . . . 8 (1st ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾)
4 fvco2 6758 . . . . . . . 8 (((1st ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)))
53, 4mpan 688 . . . . . . 7 (𝑎 ∈ ( 𝐽 × 𝐾) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)))
65adantl 484 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)))
7 fvres 6689 . . . . . . . 8 (𝑎 ∈ ( 𝐽 × 𝐾) → ((1st ↾ ( 𝐽 × 𝐾))‘𝑎) = (1st𝑎))
87fveq2d 6674 . . . . . . 7 (𝑎 ∈ ( 𝐽 × 𝐾) → (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)) = (𝐹‘(1st𝑎)))
98adantl 484 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)) = (𝐹‘(1st𝑎)))
106, 9eqtrd 2856 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘(1st𝑎)))
11 fvres 6689 . . . . . 6 (𝑎 ∈ ( 𝐽 × 𝐾) → ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎) = (2nd𝑎))
1211adantl 484 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎) = (2nd𝑎))
1310, 12eqeq12d 2837 . . . 4 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → (((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎) ↔ (𝐹‘(1st𝑎)) = (2nd𝑎)))
1413rabbidva 3478 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → {𝑎 ∈ ( 𝐽 × 𝐾) ∣ ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎)} = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ (𝐹‘(1st𝑎)) = (2nd𝑎)})
15 eqid 2821 . . . . . . . 8 𝐽 = 𝐽
16 eqid 2821 . . . . . . . 8 𝐾 = 𝐾
1715, 16cnf 21854 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
1817adantl 484 . . . . . 6 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽 𝐾)
19 fco 6531 . . . . . 6 ((𝐹: 𝐽 𝐾 ∧ (1st ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐽) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))):( 𝐽 × 𝐾)⟶ 𝐾)
2018, 1, 19sylancl 588 . . . . 5 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))):( 𝐽 × 𝐾)⟶ 𝐾)
2120ffnd 6515 . . . 4 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) Fn ( 𝐽 × 𝐾))
22 f2ndres 7714 . . . . 5 (2nd ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐾
23 ffn 6514 . . . . 5 ((2nd ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐾 → (2nd ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾))
2422, 23ax-mp 5 . . . 4 (2nd ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾)
25 fndmin 6815 . . . 4 (((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) Fn ( 𝐽 × 𝐾) ∧ (2nd ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾)) → dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))) = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎)})
2621, 24, 25sylancl 588 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))) = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎)})
27 fgraphxp 39831 . . . 4 (𝐹: 𝐽 𝐾𝐹 = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ (𝐹‘(1st𝑎)) = (2nd𝑎)})
2818, 27syl 17 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ (𝐹‘(1st𝑎)) = (2nd𝑎)})
2914, 26, 283eqtr4rd 2867 . 2 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 = dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))))
30 simpl 485 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Haus)
31 cntop1 21848 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
3231adantl 484 . . . . . 6 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3315toptopon 21525 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
3432, 33sylib 220 . . . . 5 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘ 𝐽))
35 haustop 21939 . . . . . . 7 (𝐾 ∈ Haus → 𝐾 ∈ Top)
3630, 35syl 17 . . . . . 6 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3716toptopon 21525 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3836, 37sylib 220 . . . . 5 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘ 𝐾))
39 tx1cn 22217 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (1st ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
4034, 38, 39syl2anc 586 . . . 4 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (1st ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
41 cnco 21874 . . . 4 (((1st ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
4240, 41sylancom 590 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
43 tx2cn 22218 . . . 4 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (2nd ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
4434, 38, 43syl2anc 586 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (2nd ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
4530, 42, 44hauseqlcld 22254 . 2 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))) ∈ (Clsd‘(𝐽 ×t 𝐾)))
4629, 45eqeltrd 2913 1 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3142  cin 3935   cuni 4838   × cxp 5553  dom cdm 5555  cres 5557  ccom 5559   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  Topctop 21501  TopOnctopon 21518  Clsdccld 21624   Cn ccn 21832  Hauscha 21916   ×t ctx 22168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-map 8408  df-topgen 16717  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-cn 21835  df-haus 21923  df-tx 22170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator