Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hausgraph Structured version   Visualization version   GIF version

Theorem hausgraph 43167
Description: The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
hausgraph ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾)))

Proof of Theorem hausgraph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 f1stres 7971 . . . . . . . . 9 (1st ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐽
2 ffn 6670 . . . . . . . . 9 ((1st ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐽 → (1st ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾))
31, 2ax-mp 5 . . . . . . . 8 (1st ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾)
4 fvco2 6940 . . . . . . . 8 (((1st ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)))
53, 4mpan 690 . . . . . . 7 (𝑎 ∈ ( 𝐽 × 𝐾) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)))
65adantl 481 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)))
7 fvres 6859 . . . . . . . 8 (𝑎 ∈ ( 𝐽 × 𝐾) → ((1st ↾ ( 𝐽 × 𝐾))‘𝑎) = (1st𝑎))
87fveq2d 6844 . . . . . . 7 (𝑎 ∈ ( 𝐽 × 𝐾) → (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)) = (𝐹‘(1st𝑎)))
98adantl 481 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)) = (𝐹‘(1st𝑎)))
106, 9eqtrd 2764 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘(1st𝑎)))
11 fvres 6859 . . . . . 6 (𝑎 ∈ ( 𝐽 × 𝐾) → ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎) = (2nd𝑎))
1211adantl 481 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎) = (2nd𝑎))
1310, 12eqeq12d 2745 . . . 4 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → (((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎) ↔ (𝐹‘(1st𝑎)) = (2nd𝑎)))
1413rabbidva 3409 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → {𝑎 ∈ ( 𝐽 × 𝐾) ∣ ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎)} = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ (𝐹‘(1st𝑎)) = (2nd𝑎)})
15 eqid 2729 . . . . . . . 8 𝐽 = 𝐽
16 eqid 2729 . . . . . . . 8 𝐾 = 𝐾
1715, 16cnf 23109 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
1817adantl 481 . . . . . 6 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽 𝐾)
19 fco 6694 . . . . . 6 ((𝐹: 𝐽 𝐾 ∧ (1st ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐽) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))):( 𝐽 × 𝐾)⟶ 𝐾)
2018, 1, 19sylancl 586 . . . . 5 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))):( 𝐽 × 𝐾)⟶ 𝐾)
2120ffnd 6671 . . . 4 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) Fn ( 𝐽 × 𝐾))
22 f2ndres 7972 . . . . 5 (2nd ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐾
23 ffn 6670 . . . . 5 ((2nd ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐾 → (2nd ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾))
2422, 23ax-mp 5 . . . 4 (2nd ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾)
25 fndmin 6999 . . . 4 (((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) Fn ( 𝐽 × 𝐾) ∧ (2nd ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾)) → dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))) = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎)})
2621, 24, 25sylancl 586 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))) = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎)})
27 fgraphxp 43166 . . . 4 (𝐹: 𝐽 𝐾𝐹 = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ (𝐹‘(1st𝑎)) = (2nd𝑎)})
2818, 27syl 17 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ (𝐹‘(1st𝑎)) = (2nd𝑎)})
2914, 26, 283eqtr4rd 2775 . 2 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 = dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))))
30 simpl 482 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Haus)
31 cntop1 23103 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
3231adantl 481 . . . . . 6 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3315toptopon 22780 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
3432, 33sylib 218 . . . . 5 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘ 𝐽))
35 haustop 23194 . . . . . . 7 (𝐾 ∈ Haus → 𝐾 ∈ Top)
3630, 35syl 17 . . . . . 6 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3716toptopon 22780 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3836, 37sylib 218 . . . . 5 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘ 𝐾))
39 tx1cn 23472 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (1st ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
4034, 38, 39syl2anc 584 . . . 4 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (1st ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
41 cnco 23129 . . . 4 (((1st ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
4240, 41sylancom 588 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
43 tx2cn 23473 . . . 4 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (2nd ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
4434, 38, 43syl2anc 584 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (2nd ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
4530, 42, 44hauseqlcld 23509 . 2 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))) ∈ (Clsd‘(𝐽 ×t 𝐾)))
4629, 45eqeltrd 2828 1 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  cin 3910   cuni 4867   × cxp 5629  dom cdm 5631  cres 5633  ccom 5635   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Topctop 22756  TopOnctopon 22773  Clsdccld 22879   Cn ccn 23087  Hauscha 23171   ×t ctx 23423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-topgen 17382  df-top 22757  df-topon 22774  df-bases 22809  df-cld 22882  df-cn 23090  df-haus 23178  df-tx 23425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator