Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hausgraph Structured version   Visualization version   GIF version

Theorem hausgraph 43194
Description: The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
hausgraph ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾)))

Proof of Theorem hausgraph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 f1stres 7992 . . . . . . . . 9 (1st ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐽
2 ffn 6688 . . . . . . . . 9 ((1st ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐽 → (1st ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾))
31, 2ax-mp 5 . . . . . . . 8 (1st ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾)
4 fvco2 6958 . . . . . . . 8 (((1st ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)))
53, 4mpan 690 . . . . . . 7 (𝑎 ∈ ( 𝐽 × 𝐾) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)))
65adantl 481 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)))
7 fvres 6877 . . . . . . . 8 (𝑎 ∈ ( 𝐽 × 𝐾) → ((1st ↾ ( 𝐽 × 𝐾))‘𝑎) = (1st𝑎))
87fveq2d 6862 . . . . . . 7 (𝑎 ∈ ( 𝐽 × 𝐾) → (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)) = (𝐹‘(1st𝑎)))
98adantl 481 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → (𝐹‘((1st ↾ ( 𝐽 × 𝐾))‘𝑎)) = (𝐹‘(1st𝑎)))
106, 9eqtrd 2764 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = (𝐹‘(1st𝑎)))
11 fvres 6877 . . . . . 6 (𝑎 ∈ ( 𝐽 × 𝐾) → ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎) = (2nd𝑎))
1211adantl 481 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎) = (2nd𝑎))
1310, 12eqeq12d 2745 . . . 4 (((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑎 ∈ ( 𝐽 × 𝐾)) → (((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎) ↔ (𝐹‘(1st𝑎)) = (2nd𝑎)))
1413rabbidva 3412 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → {𝑎 ∈ ( 𝐽 × 𝐾) ∣ ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎)} = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ (𝐹‘(1st𝑎)) = (2nd𝑎)})
15 eqid 2729 . . . . . . . 8 𝐽 = 𝐽
16 eqid 2729 . . . . . . . 8 𝐾 = 𝐾
1715, 16cnf 23133 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
1817adantl 481 . . . . . 6 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽 𝐾)
19 fco 6712 . . . . . 6 ((𝐹: 𝐽 𝐾 ∧ (1st ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐽) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))):( 𝐽 × 𝐾)⟶ 𝐾)
2018, 1, 19sylancl 586 . . . . 5 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))):( 𝐽 × 𝐾)⟶ 𝐾)
2120ffnd 6689 . . . 4 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) Fn ( 𝐽 × 𝐾))
22 f2ndres 7993 . . . . 5 (2nd ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐾
23 ffn 6688 . . . . 5 ((2nd ↾ ( 𝐽 × 𝐾)):( 𝐽 × 𝐾)⟶ 𝐾 → (2nd ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾))
2422, 23ax-mp 5 . . . 4 (2nd ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾)
25 fndmin 7017 . . . 4 (((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) Fn ( 𝐽 × 𝐾) ∧ (2nd ↾ ( 𝐽 × 𝐾)) Fn ( 𝐽 × 𝐾)) → dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))) = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎)})
2621, 24, 25sylancl 586 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))) = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾)))‘𝑎) = ((2nd ↾ ( 𝐽 × 𝐾))‘𝑎)})
27 fgraphxp 43193 . . . 4 (𝐹: 𝐽 𝐾𝐹 = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ (𝐹‘(1st𝑎)) = (2nd𝑎)})
2818, 27syl 17 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 = {𝑎 ∈ ( 𝐽 × 𝐾) ∣ (𝐹‘(1st𝑎)) = (2nd𝑎)})
2914, 26, 283eqtr4rd 2775 . 2 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 = dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))))
30 simpl 482 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Haus)
31 cntop1 23127 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
3231adantl 481 . . . . . 6 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3315toptopon 22804 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
3432, 33sylib 218 . . . . 5 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘ 𝐽))
35 haustop 23218 . . . . . . 7 (𝐾 ∈ Haus → 𝐾 ∈ Top)
3630, 35syl 17 . . . . . 6 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3716toptopon 22804 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3836, 37sylib 218 . . . . 5 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘ 𝐾))
39 tx1cn 23496 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (1st ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
4034, 38, 39syl2anc 584 . . . 4 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (1st ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
41 cnco 23153 . . . 4 (((1st ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
4240, 41sylancom 588 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
43 tx2cn 23497 . . . 4 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (2nd ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
4434, 38, 43syl2anc 584 . . 3 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (2nd ↾ ( 𝐽 × 𝐾)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
4530, 42, 44hauseqlcld 23533 . 2 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → dom ((𝐹 ∘ (1st ↾ ( 𝐽 × 𝐾))) ∩ (2nd ↾ ( 𝐽 × 𝐾))) ∈ (Clsd‘(𝐽 ×t 𝐾)))
4629, 45eqeltrd 2828 1 ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  cin 3913   cuni 4871   × cxp 5636  dom cdm 5638  cres 5640  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Topctop 22780  TopOnctopon 22797  Clsdccld 22903   Cn ccn 23111  Hauscha 23195   ×t ctx 23447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-cn 23114  df-haus 23202  df-tx 23449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator