MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenhaus Structured version   Visualization version   GIF version

Theorem kgenhaus 22603
Description: The compact generator generates another Hausdorff topology given a Hausdorff topology to start from. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgenhaus (𝐽 ∈ Haus → (𝑘Gen‘𝐽) ∈ Haus)

Proof of Theorem kgenhaus
StepHypRef Expression
1 haustop 22390 . . . 4 (𝐽 ∈ Haus → 𝐽 ∈ Top)
2 toptopon2 21975 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 217 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ (TopOn‘ 𝐽))
4 kgentopon 22597 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝑘Gen‘𝐽) ∈ (TopOn‘ 𝐽))
53, 4syl 17 . 2 (𝐽 ∈ Haus → (𝑘Gen‘𝐽) ∈ (TopOn‘ 𝐽))
6 kgenss 22602 . . 3 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
71, 6syl 17 . 2 (𝐽 ∈ Haus → 𝐽 ⊆ (𝑘Gen‘𝐽))
8 eqid 2738 . . 3 𝐽 = 𝐽
98sshaus 22434 . 2 ((𝐽 ∈ Haus ∧ (𝑘Gen‘𝐽) ∈ (TopOn‘ 𝐽) ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝑘Gen‘𝐽) ∈ Haus)
105, 7, 9mpd3an23 1461 1 (𝐽 ∈ Haus → (𝑘Gen‘𝐽) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883   cuni 4836  cfv 6418  Topctop 21950  TopOnctopon 21967  Hauscha 22367  𝑘Genckgen 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-map 8575  df-en 8692  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-haus 22374  df-cmp 22446  df-kgen 22593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator