MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauscmp Structured version   Visualization version   GIF version

Theorem hauscmp 22012
Description: A compact subspace of a T2 space is closed. (Contributed by Jeff Hankins, 16-Jan-2010.) (Proof shortened by Mario Carneiro, 14-Dec-2013.)
Hypothesis
Ref Expression
hauscmp.1 𝑋 = 𝐽
Assertion
Ref Expression
hauscmp ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽))

Proof of Theorem hauscmp
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1134 . 2 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝑆𝑋)
2 hauscmp.1 . . . . . 6 𝑋 = 𝐽
3 eqid 2798 . . . . . 6 {𝑦𝐽 ∣ ∃𝑤𝐽 (𝑥𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))} = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝑥𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
4 simpl1 1188 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → 𝐽 ∈ Haus)
5 simpl2 1189 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → 𝑆𝑋)
6 simpl3 1190 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → (𝐽t 𝑆) ∈ Comp)
7 simpr 488 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → 𝑥 ∈ (𝑋𝑆))
82, 3, 4, 5, 6, 7hauscmplem 22011 . . . . 5 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
9 haustop 21936 . . . . . . . . . . 11 (𝐽 ∈ Haus → 𝐽 ∈ Top)
1093ad2ant1 1130 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝐽 ∈ Top)
11 elssuni 4830 . . . . . . . . . . 11 (𝑧𝐽𝑧 𝐽)
1211, 2sseqtrrdi 3966 . . . . . . . . . 10 (𝑧𝐽𝑧𝑋)
132sscls 21661 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑧𝑋) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧))
1410, 12, 13syl2an 598 . . . . . . . . 9 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑧𝐽) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧))
15 sstr2 3922 . . . . . . . . 9 (𝑧 ⊆ ((cls‘𝐽)‘𝑧) → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) → 𝑧 ⊆ (𝑋𝑆)))
1614, 15syl 17 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑧𝐽) → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) → 𝑧 ⊆ (𝑋𝑆)))
1716anim2d 614 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑧𝐽) → ((𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) → (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
1817reximdva 3233 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → (∃𝑧𝐽 (𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
1918adantr 484 . . . . 5 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → (∃𝑧𝐽 (𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
208, 19mpd 15 . . . 4 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆)))
2120ralrimiva 3149 . . 3 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → ∀𝑥 ∈ (𝑋𝑆)∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆)))
22 eltop2 21580 . . . 4 (𝐽 ∈ Top → ((𝑋𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝑆)∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
2310, 22syl 17 . . 3 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → ((𝑋𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝑆)∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
2421, 23mpbird 260 . 2 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → (𝑋𝑆) ∈ 𝐽)
252iscld 21632 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
2610, 25syl 17 . 2 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
271, 24, 26mpbir2and 712 1 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {crab 3110  cdif 3878  wss 3881   cuni 4800  cfv 6324  (class class class)co 7135  t crest 16686  Topctop 21498  Clsdccld 21621  clsccl 21623  Hauscha 21913  Compccmp 21991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-fin 8496  df-fi 8859  df-rest 16688  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cld 21624  df-cls 21626  df-haus 21920  df-cmp 21992
This theorem is referenced by:  txkgen  22257  cmphaushmeo  22405  cnheibor  23560
  Copyright terms: Public domain W3C validator