MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauscmp Structured version   Visualization version   GIF version

Theorem hauscmp 23436
Description: A compact subspace of a T2 space is closed. (Contributed by Jeff Hankins, 16-Jan-2010.) (Proof shortened by Mario Carneiro, 14-Dec-2013.)
Hypothesis
Ref Expression
hauscmp.1 𝑋 = 𝐽
Assertion
Ref Expression
hauscmp ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽))

Proof of Theorem hauscmp
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝑆𝑋)
2 hauscmp.1 . . . . . 6 𝑋 = 𝐽
3 eqid 2740 . . . . . 6 {𝑦𝐽 ∣ ∃𝑤𝐽 (𝑥𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))} = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝑥𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
4 simpl1 1191 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → 𝐽 ∈ Haus)
5 simpl2 1192 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → 𝑆𝑋)
6 simpl3 1193 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → (𝐽t 𝑆) ∈ Comp)
7 simpr 484 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → 𝑥 ∈ (𝑋𝑆))
82, 3, 4, 5, 6, 7hauscmplem 23435 . . . . 5 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
9 haustop 23360 . . . . . . . . . . 11 (𝐽 ∈ Haus → 𝐽 ∈ Top)
1093ad2ant1 1133 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝐽 ∈ Top)
11 elssuni 4961 . . . . . . . . . . 11 (𝑧𝐽𝑧 𝐽)
1211, 2sseqtrrdi 4060 . . . . . . . . . 10 (𝑧𝐽𝑧𝑋)
132sscls 23085 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑧𝑋) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧))
1410, 12, 13syl2an 595 . . . . . . . . 9 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑧𝐽) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧))
15 sstr2 4015 . . . . . . . . 9 (𝑧 ⊆ ((cls‘𝐽)‘𝑧) → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) → 𝑧 ⊆ (𝑋𝑆)))
1614, 15syl 17 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑧𝐽) → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) → 𝑧 ⊆ (𝑋𝑆)))
1716anim2d 611 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑧𝐽) → ((𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) → (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
1817reximdva 3174 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → (∃𝑧𝐽 (𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
1918adantr 480 . . . . 5 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → (∃𝑧𝐽 (𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
208, 19mpd 15 . . . 4 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆)))
2120ralrimiva 3152 . . 3 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → ∀𝑥 ∈ (𝑋𝑆)∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆)))
22 eltop2 23003 . . . 4 (𝐽 ∈ Top → ((𝑋𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝑆)∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
2310, 22syl 17 . . 3 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → ((𝑋𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝑆)∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
2421, 23mpbird 257 . 2 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → (𝑋𝑆) ∈ 𝐽)
252iscld 23056 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
2610, 25syl 17 . 2 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
271, 24, 26mpbir2and 712 1 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  cdif 3973  wss 3976   cuni 4931  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  Clsdccld 23045  clsccl 23047  Hauscha 23337  Compccmp 23415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-2o 8523  df-en 9004  df-dom 9005  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-cls 23050  df-haus 23344  df-cmp 23416
This theorem is referenced by:  txkgen  23681  cmphaushmeo  23829  cnheibor  25006
  Copyright terms: Public domain W3C validator