MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauscmp Structured version   Visualization version   GIF version

Theorem hauscmp 23301
Description: A compact subspace of a T2 space is closed. (Contributed by Jeff Hankins, 16-Jan-2010.) (Proof shortened by Mario Carneiro, 14-Dec-2013.)
Hypothesis
Ref Expression
hauscmp.1 𝑋 = 𝐽
Assertion
Ref Expression
hauscmp ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽))

Proof of Theorem hauscmp
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝑆𝑋)
2 hauscmp.1 . . . . . 6 𝑋 = 𝐽
3 eqid 2730 . . . . . 6 {𝑦𝐽 ∣ ∃𝑤𝐽 (𝑥𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))} = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝑥𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
4 simpl1 1192 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → 𝐽 ∈ Haus)
5 simpl2 1193 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → 𝑆𝑋)
6 simpl3 1194 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → (𝐽t 𝑆) ∈ Comp)
7 simpr 484 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → 𝑥 ∈ (𝑋𝑆))
82, 3, 4, 5, 6, 7hauscmplem 23300 . . . . 5 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
9 haustop 23225 . . . . . . . . . . 11 (𝐽 ∈ Haus → 𝐽 ∈ Top)
1093ad2ant1 1133 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝐽 ∈ Top)
11 elssuni 4904 . . . . . . . . . . 11 (𝑧𝐽𝑧 𝐽)
1211, 2sseqtrrdi 3991 . . . . . . . . . 10 (𝑧𝐽𝑧𝑋)
132sscls 22950 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑧𝑋) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧))
1410, 12, 13syl2an 596 . . . . . . . . 9 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑧𝐽) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧))
15 sstr2 3956 . . . . . . . . 9 (𝑧 ⊆ ((cls‘𝐽)‘𝑧) → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) → 𝑧 ⊆ (𝑋𝑆)))
1614, 15syl 17 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑧𝐽) → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) → 𝑧 ⊆ (𝑋𝑆)))
1716anim2d 612 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑧𝐽) → ((𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) → (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
1817reximdva 3147 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → (∃𝑧𝐽 (𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
1918adantr 480 . . . . 5 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → (∃𝑧𝐽 (𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
208, 19mpd 15 . . . 4 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆)))
2120ralrimiva 3126 . . 3 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → ∀𝑥 ∈ (𝑋𝑆)∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆)))
22 eltop2 22869 . . . 4 (𝐽 ∈ Top → ((𝑋𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝑆)∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
2310, 22syl 17 . . 3 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → ((𝑋𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝑆)∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
2421, 23mpbird 257 . 2 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → (𝑋𝑆) ∈ 𝐽)
252iscld 22921 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
2610, 25syl 17 . 2 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
271, 24, 26mpbir2and 713 1 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  cdif 3914  wss 3917   cuni 4874  cfv 6514  (class class class)co 7390  t crest 17390  Topctop 22787  Clsdccld 22910  clsccl 22912  Hauscha 23202  Compccmp 23280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-en 8922  df-dom 8923  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-cls 22915  df-haus 23209  df-cmp 23281
This theorem is referenced by:  txkgen  23546  cmphaushmeo  23694  cnheibor  24861
  Copyright terms: Public domain W3C validator