| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp2 1137 | . 2
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → 𝑆 ⊆ 𝑋) | 
| 2 |  | hauscmp.1 | . . . . . 6
⊢ 𝑋 = ∪
𝐽 | 
| 3 |  | eqid 2736 | . . . . . 6
⊢ {𝑦 ∈ 𝐽 ∣ ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} = {𝑦 ∈ 𝐽 ∣ ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} | 
| 4 |  | simpl1 1191 | . . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → 𝐽 ∈ Haus) | 
| 5 |  | simpl2 1192 | . . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → 𝑆 ⊆ 𝑋) | 
| 6 |  | simpl3 1193 | . . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → (𝐽 ↾t 𝑆) ∈ Comp) | 
| 7 |  | simpr 484 | . . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → 𝑥 ∈ (𝑋 ∖ 𝑆)) | 
| 8 | 2, 3, 4, 5, 6, 7 | hauscmplem 23415 | . . . . 5
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) | 
| 9 |  | haustop 23340 | . . . . . . . . . . 11
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) | 
| 10 | 9 | 3ad2ant1 1133 | . . . . . . . . . 10
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → 𝐽 ∈ Top) | 
| 11 |  | elssuni 4936 | . . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐽 → 𝑧 ⊆ ∪ 𝐽) | 
| 12 | 11, 2 | sseqtrrdi 4024 | . . . . . . . . . 10
⊢ (𝑧 ∈ 𝐽 → 𝑧 ⊆ 𝑋) | 
| 13 | 2 | sscls 23065 | . . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑋) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧)) | 
| 14 | 10, 12, 13 | syl2an 596 | . . . . . . . . 9
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑧 ∈ 𝐽) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧)) | 
| 15 |  | sstr2 3989 | . . . . . . . . 9
⊢ (𝑧 ⊆ ((cls‘𝐽)‘𝑧) → (((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆) → 𝑧 ⊆ (𝑋 ∖ 𝑆))) | 
| 16 | 14, 15 | syl 17 | . . . . . . . 8
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑧 ∈ 𝐽) → (((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆) → 𝑧 ⊆ (𝑋 ∖ 𝑆))) | 
| 17 | 16 | anim2d 612 | . . . . . . 7
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑧 ∈ 𝐽) → ((𝑥 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆)) → (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆)))) | 
| 18 | 17 | reximdva 3167 | . . . . . 6
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → (∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆)) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆)))) | 
| 19 | 18 | adantr 480 | . . . . 5
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → (∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆)) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆)))) | 
| 20 | 8, 19 | mpd 15 | . . . 4
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆))) | 
| 21 | 20 | ralrimiva 3145 | . . 3
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → ∀𝑥 ∈ (𝑋 ∖ 𝑆)∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆))) | 
| 22 |  | eltop2 22983 | . . . 4
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋 ∖ 𝑆)∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆)))) | 
| 23 | 10, 22 | syl 17 | . . 3
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → ((𝑋 ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋 ∖ 𝑆)∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆)))) | 
| 24 | 21, 23 | mpbird 257 | . 2
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → (𝑋 ∖ 𝑆) ∈ 𝐽) | 
| 25 | 2 | iscld 23036 | . . 3
⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) | 
| 26 | 10, 25 | syl 17 | . 2
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) | 
| 27 | 1, 24, 26 | mpbir2and 713 | 1
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽)) |