Step | Hyp | Ref
| Expression |
1 | | simp2 1136 |
. 2
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → 𝑆 ⊆ 𝑋) |
2 | | hauscmp.1 |
. . . . . 6
⊢ 𝑋 = ∪
𝐽 |
3 | | eqid 2738 |
. . . . . 6
⊢ {𝑦 ∈ 𝐽 ∣ ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} = {𝑦 ∈ 𝐽 ∣ ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} |
4 | | simpl1 1190 |
. . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → 𝐽 ∈ Haus) |
5 | | simpl2 1191 |
. . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → 𝑆 ⊆ 𝑋) |
6 | | simpl3 1192 |
. . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → (𝐽 ↾t 𝑆) ∈ Comp) |
7 | | simpr 485 |
. . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → 𝑥 ∈ (𝑋 ∖ 𝑆)) |
8 | 2, 3, 4, 5, 6, 7 | hauscmplem 22557 |
. . . . 5
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
9 | | haustop 22482 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
10 | 9 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → 𝐽 ∈ Top) |
11 | | elssuni 4871 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐽 → 𝑧 ⊆ ∪ 𝐽) |
12 | 11, 2 | sseqtrrdi 3972 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐽 → 𝑧 ⊆ 𝑋) |
13 | 2 | sscls 22207 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑋) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧)) |
14 | 10, 12, 13 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑧 ∈ 𝐽) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧)) |
15 | | sstr2 3928 |
. . . . . . . . 9
⊢ (𝑧 ⊆ ((cls‘𝐽)‘𝑧) → (((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆) → 𝑧 ⊆ (𝑋 ∖ 𝑆))) |
16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑧 ∈ 𝐽) → (((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆) → 𝑧 ⊆ (𝑋 ∖ 𝑆))) |
17 | 16 | anim2d 612 |
. . . . . . 7
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑧 ∈ 𝐽) → ((𝑥 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆)) → (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆)))) |
18 | 17 | reximdva 3203 |
. . . . . 6
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → (∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆)) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆)))) |
19 | 18 | adantr 481 |
. . . . 5
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → (∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆)) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆)))) |
20 | 8, 19 | mpd 15 |
. . . 4
⊢ (((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋 ∖ 𝑆)) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆))) |
21 | 20 | ralrimiva 3103 |
. . 3
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → ∀𝑥 ∈ (𝑋 ∖ 𝑆)∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆))) |
22 | | eltop2 22125 |
. . . 4
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋 ∖ 𝑆)∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆)))) |
23 | 10, 22 | syl 17 |
. . 3
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → ((𝑋 ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋 ∖ 𝑆)∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑋 ∖ 𝑆)))) |
24 | 21, 23 | mpbird 256 |
. 2
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
25 | 2 | iscld 22178 |
. . 3
⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
26 | 10, 25 | syl 17 |
. 2
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
27 | 1, 24, 26 | mpbir2and 710 |
1
⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽)) |