MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauscmp Structured version   Visualization version   GIF version

Theorem hauscmp 22466
Description: A compact subspace of a T2 space is closed. (Contributed by Jeff Hankins, 16-Jan-2010.) (Proof shortened by Mario Carneiro, 14-Dec-2013.)
Hypothesis
Ref Expression
hauscmp.1 𝑋 = 𝐽
Assertion
Ref Expression
hauscmp ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽))

Proof of Theorem hauscmp
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . 2 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝑆𝑋)
2 hauscmp.1 . . . . . 6 𝑋 = 𝐽
3 eqid 2738 . . . . . 6 {𝑦𝐽 ∣ ∃𝑤𝐽 (𝑥𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))} = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝑥𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
4 simpl1 1189 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → 𝐽 ∈ Haus)
5 simpl2 1190 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → 𝑆𝑋)
6 simpl3 1191 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → (𝐽t 𝑆) ∈ Comp)
7 simpr 484 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → 𝑥 ∈ (𝑋𝑆))
82, 3, 4, 5, 6, 7hauscmplem 22465 . . . . 5 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
9 haustop 22390 . . . . . . . . . . 11 (𝐽 ∈ Haus → 𝐽 ∈ Top)
1093ad2ant1 1131 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝐽 ∈ Top)
11 elssuni 4868 . . . . . . . . . . 11 (𝑧𝐽𝑧 𝐽)
1211, 2sseqtrrdi 3968 . . . . . . . . . 10 (𝑧𝐽𝑧𝑋)
132sscls 22115 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑧𝑋) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧))
1410, 12, 13syl2an 595 . . . . . . . . 9 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑧𝐽) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧))
15 sstr2 3924 . . . . . . . . 9 (𝑧 ⊆ ((cls‘𝐽)‘𝑧) → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) → 𝑧 ⊆ (𝑋𝑆)))
1614, 15syl 17 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑧𝐽) → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) → 𝑧 ⊆ (𝑋𝑆)))
1716anim2d 611 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑧𝐽) → ((𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) → (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
1817reximdva 3202 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → (∃𝑧𝐽 (𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
1918adantr 480 . . . . 5 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → (∃𝑧𝐽 (𝑥𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
208, 19mpd 15 . . . 4 (((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) ∧ 𝑥 ∈ (𝑋𝑆)) → ∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆)))
2120ralrimiva 3107 . . 3 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → ∀𝑥 ∈ (𝑋𝑆)∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆)))
22 eltop2 22033 . . . 4 (𝐽 ∈ Top → ((𝑋𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝑆)∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
2310, 22syl 17 . . 3 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → ((𝑋𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝑆)∃𝑧𝐽 (𝑥𝑧𝑧 ⊆ (𝑋𝑆))))
2421, 23mpbird 256 . 2 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → (𝑋𝑆) ∈ 𝐽)
252iscld 22086 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
2610, 25syl 17 . 2 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
271, 24, 26mpbir2and 709 1 ((𝐽 ∈ Haus ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  cdif 3880  wss 3883   cuni 4836  cfv 6418  (class class class)co 7255  t crest 17048  Topctop 21950  Clsdccld 22075  clsccl 22077  Hauscha 22367  Compccmp 22445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-cls 22080  df-haus 22374  df-cmp 22446
This theorem is referenced by:  txkgen  22711  cmphaushmeo  22859  cnheibor  24024
  Copyright terms: Public domain W3C validator