MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres Structured version   Visualization version   GIF version

Theorem cnextfres 22244
Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 29-Aug-2020.)
Hypotheses
Ref Expression
cnextfres.c 𝐶 = 𝐽
cnextfres.b 𝐵 = 𝐾
cnextfres.j (𝜑𝐽 ∈ Top)
cnextfres.k (𝜑𝐾 ∈ Haus)
cnextfres.a (𝜑𝐴𝐶)
cnextfres.1 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
cnextfres.x (𝜑𝑋𝐴)
Assertion
Ref Expression
cnextfres (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋))

Proof of Theorem cnextfres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnextfres.j . . 3 (𝜑𝐽 ∈ Top)
2 cnextfres.k . . 3 (𝜑𝐾 ∈ Haus)
3 cnextfres.1 . . . . 5 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
4 eqid 2826 . . . . . 6 (𝐽t 𝐴) = (𝐽t 𝐴)
5 cnextfres.b . . . . . 6 𝐵 = 𝐾
64, 5cnf 21422 . . . . 5 (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) → 𝐹: (𝐽t 𝐴)⟶𝐵)
73, 6syl 17 . . . 4 (𝜑𝐹: (𝐽t 𝐴)⟶𝐵)
8 cnextfres.a . . . . . 6 (𝜑𝐴𝐶)
9 cnextfres.c . . . . . . 7 𝐶 = 𝐽
109restuni 21338 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 = (𝐽t 𝐴))
111, 8, 10syl2anc 581 . . . . 5 (𝜑𝐴 = (𝐽t 𝐴))
1211feq2d 6265 . . . 4 (𝜑 → (𝐹:𝐴𝐵𝐹: (𝐽t 𝐴)⟶𝐵))
137, 12mpbird 249 . . 3 (𝜑𝐹:𝐴𝐵)
149, 5cnextfun 22239 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
151, 2, 13, 8, 14syl22anc 874 . 2 (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹))
169sscls 21232 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
171, 8, 16syl2anc 581 . . . . . . 7 (𝜑𝐴 ⊆ ((cls‘𝐽)‘𝐴))
18 cnextfres.x . . . . . . 7 (𝜑𝑋𝐴)
1917, 18sseldd 3829 . . . . . 6 (𝜑𝑋 ∈ ((cls‘𝐽)‘𝐴))
209, 5, 1, 8, 3, 18flfcntr 22218 . . . . . 6 (𝜑 → (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
2119, 20jca 509 . . . . 5 (𝜑 → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
22 sneq 4408 . . . . . . . . . 10 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2322fveq2d 6438 . . . . . . . . 9 (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋}))
2423oveq1d 6921 . . . . . . . 8 (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
2524oveq2d 6922 . . . . . . 7 (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
2625fveq1d 6436 . . . . . 6 (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
2726opeliunxp2 5494 . . . . 5 (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
2821, 27sylibr 226 . . . 4 (𝜑 → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
29 haustop 21507 . . . . . . 7 (𝐾 ∈ Haus → 𝐾 ∈ Top)
302, 29syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
319, 5cnextfval 22237 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
321, 30, 13, 8, 31syl22anc 874 . . . . 5 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
3332eleq2d 2893 . . . 4 (𝜑 → (⟨𝑋, (𝐹𝑋)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3428, 33mpbird 249 . . 3 (𝜑 → ⟨𝑋, (𝐹𝑋)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
35 df-br 4875 . . 3 (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
3634, 35sylibr 226 . 2 (𝜑𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋))
37 funbrfv 6481 . . 3 (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋)))
3837imp 397 . 2 ((Fun ((𝐽CnExt𝐾)‘𝐹) ∧ 𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋)) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋))
3915, 36, 38syl2anc 581 1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wss 3799  {csn 4398  cop 4404   cuni 4659   ciun 4741   class class class wbr 4874   × cxp 5341  Fun wfun 6118  wf 6120  cfv 6124  (class class class)co 6906  t crest 16435  Topctop 21069  clsccl 21194  neicnei 21273   Cn ccn 21400  Hauscha 21484   fLimf cflf 22110  CnExtccnext 22234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-oadd 7831  df-er 8010  df-map 8125  df-pm 8126  df-en 8224  df-fin 8227  df-fi 8587  df-rest 16437  df-topgen 16458  df-fbas 20104  df-fg 20105  df-top 21070  df-topon 21087  df-bases 21122  df-cld 21195  df-ntr 21196  df-cls 21197  df-nei 21274  df-cn 21403  df-cnp 21404  df-haus 21491  df-fil 22021  df-fm 22113  df-flim 22114  df-flf 22115  df-cnext 22235
This theorem is referenced by:  rrhqima  30604
  Copyright terms: Public domain W3C validator