MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres Structured version   Visualization version   GIF version

Theorem cnextfres 23963
Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 29-Aug-2020.)
Hypotheses
Ref Expression
cnextfres.c 𝐶 = 𝐽
cnextfres.b 𝐵 = 𝐾
cnextfres.j (𝜑𝐽 ∈ Top)
cnextfres.k (𝜑𝐾 ∈ Haus)
cnextfres.a (𝜑𝐴𝐶)
cnextfres.1 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
cnextfres.x (𝜑𝑋𝐴)
Assertion
Ref Expression
cnextfres (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋))

Proof of Theorem cnextfres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnextfres.j . . 3 (𝜑𝐽 ∈ Top)
2 cnextfres.k . . 3 (𝜑𝐾 ∈ Haus)
3 cnextfres.1 . . . . 5 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
4 eqid 2730 . . . . . 6 (𝐽t 𝐴) = (𝐽t 𝐴)
5 cnextfres.b . . . . . 6 𝐵 = 𝐾
64, 5cnf 23140 . . . . 5 (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) → 𝐹: (𝐽t 𝐴)⟶𝐵)
73, 6syl 17 . . . 4 (𝜑𝐹: (𝐽t 𝐴)⟶𝐵)
8 cnextfres.a . . . . . 6 (𝜑𝐴𝐶)
9 cnextfres.c . . . . . . 7 𝐶 = 𝐽
109restuni 23056 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 = (𝐽t 𝐴))
111, 8, 10syl2anc 584 . . . . 5 (𝜑𝐴 = (𝐽t 𝐴))
1211feq2d 6675 . . . 4 (𝜑 → (𝐹:𝐴𝐵𝐹: (𝐽t 𝐴)⟶𝐵))
137, 12mpbird 257 . . 3 (𝜑𝐹:𝐴𝐵)
149, 5cnextfun 23958 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
151, 2, 13, 8, 14syl22anc 838 . 2 (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹))
169sscls 22950 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
171, 8, 16syl2anc 584 . . . . . 6 (𝜑𝐴 ⊆ ((cls‘𝐽)‘𝐴))
18 cnextfres.x . . . . . 6 (𝜑𝑋𝐴)
1917, 18sseldd 3950 . . . . 5 (𝜑𝑋 ∈ ((cls‘𝐽)‘𝐴))
209, 5, 1, 8, 3, 18flfcntr 23937 . . . . 5 (𝜑 → (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
21 sneq 4602 . . . . . . . . . 10 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2221fveq2d 6865 . . . . . . . . 9 (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋}))
2322oveq1d 7405 . . . . . . . 8 (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
2423oveq2d 7406 . . . . . . 7 (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
2524fveq1d 6863 . . . . . 6 (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
2625opeliunxp2 5805 . . . . 5 (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
2719, 20, 26sylanbrc 583 . . . 4 (𝜑 → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
28 haustop 23225 . . . . . 6 (𝐾 ∈ Haus → 𝐾 ∈ Top)
292, 28syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
309, 5cnextfval 23956 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
311, 29, 13, 8, 30syl22anc 838 . . . 4 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
3227, 31eleqtrrd 2832 . . 3 (𝜑 → ⟨𝑋, (𝐹𝑋)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
33 df-br 5111 . . 3 (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
3432, 33sylibr 234 . 2 (𝜑𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋))
35 funbrfv 6912 . 2 (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋)))
3615, 34, 35sylc 65 1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917  {csn 4592  cop 4598   cuni 4874   ciun 4958   class class class wbr 5110   × cxp 5639  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  t crest 17390  Topctop 22787  clsccl 22912  neicnei 22991   Cn ccn 23118  Hauscha 23202   fLimf cflf 23829  CnExtccnext 23953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-map 8804  df-pm 8805  df-en 8922  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-haus 23209  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-cnext 23954
This theorem is referenced by:  rrhqima  34011
  Copyright terms: Public domain W3C validator