| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnextfres | Structured version Visualization version GIF version | ||
| Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 29-Aug-2020.) |
| Ref | Expression |
|---|---|
| cnextfres.c | ⊢ 𝐶 = ∪ 𝐽 |
| cnextfres.b | ⊢ 𝐵 = ∪ 𝐾 |
| cnextfres.j | ⊢ (𝜑 → 𝐽 ∈ Top) |
| cnextfres.k | ⊢ (𝜑 → 𝐾 ∈ Haus) |
| cnextfres.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| cnextfres.1 | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| cnextfres.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| cnextfres | ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextfres.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | cnextfres.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Haus) | |
| 3 | cnextfres.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) | |
| 4 | eqid 2735 | . . . . . 6 ⊢ ∪ (𝐽 ↾t 𝐴) = ∪ (𝐽 ↾t 𝐴) | |
| 5 | cnextfres.b | . . . . . 6 ⊢ 𝐵 = ∪ 𝐾 | |
| 6 | 4, 5 | cnf 23184 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) → 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵) |
| 7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵) |
| 8 | cnextfres.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 9 | cnextfres.c | . . . . . . 7 ⊢ 𝐶 = ∪ 𝐽 | |
| 10 | 9 | restuni 23100 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 11 | 1, 8, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 12 | 11 | feq2d 6692 | . . . 4 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵)) |
| 13 | 7, 12 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 14 | 9, 5 | cnextfun 24002 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹)) |
| 15 | 1, 2, 13, 8, 14 | syl22anc 838 | . 2 ⊢ (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹)) |
| 16 | 9 | sscls 22994 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
| 17 | 1, 8, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
| 18 | cnextfres.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 19 | 17, 18 | sseldd 3959 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ((cls‘𝐽)‘𝐴)) |
| 20 | 9, 5, 1, 8, 3, 18 | flfcntr 23981 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
| 21 | sneq 4611 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
| 22 | 21 | fveq2d 6880 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋})) |
| 23 | 22 | oveq1d 7420 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)) |
| 24 | 23 | oveq2d 7421 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))) |
| 25 | 24 | fveq1d 6878 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
| 26 | 25 | opeliunxp2 5818 | . . . . 5 ⊢ (〈𝑋, (𝐹‘𝑋)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))) |
| 27 | 19, 20, 26 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 〈𝑋, (𝐹‘𝑋)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
| 28 | haustop 23269 | . . . . . 6 ⊢ (𝐾 ∈ Haus → 𝐾 ∈ Top) | |
| 29 | 2, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 30 | 9, 5 | cnextfval 24000 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
| 31 | 1, 29, 13, 8, 30 | syl22anc 838 | . . . 4 ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
| 32 | 27, 31 | eleqtrrd 2837 | . . 3 ⊢ (𝜑 → 〈𝑋, (𝐹‘𝑋)〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) |
| 33 | df-br 5120 | . . 3 ⊢ (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋) ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) | |
| 34 | 32, 33 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋)) |
| 35 | funbrfv 6927 | . 2 ⊢ (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋))) | |
| 36 | 15, 34, 35 | sylc 65 | 1 ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 {csn 4601 〈cop 4607 ∪ cuni 4883 ∪ ciun 4967 class class class wbr 5119 × cxp 5652 Fun wfun 6525 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↾t crest 17434 Topctop 22831 clsccl 22956 neicnei 23035 Cn ccn 23162 Hauscha 23246 fLimf cflf 23873 CnExtccnext 23997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-map 8842 df-pm 8843 df-en 8960 df-fin 8963 df-fi 9423 df-rest 17436 df-topgen 17457 df-fbas 21312 df-fg 21313 df-top 22832 df-topon 22849 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-cn 23165 df-cnp 23166 df-haus 23253 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-cnext 23998 |
| This theorem is referenced by: rrhqima 34045 |
| Copyright terms: Public domain | W3C validator |