MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres Structured version   Visualization version   GIF version

Theorem cnextfres 22813
Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 29-Aug-2020.)
Hypotheses
Ref Expression
cnextfres.c 𝐶 = 𝐽
cnextfres.b 𝐵 = 𝐾
cnextfres.j (𝜑𝐽 ∈ Top)
cnextfres.k (𝜑𝐾 ∈ Haus)
cnextfres.a (𝜑𝐴𝐶)
cnextfres.1 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
cnextfres.x (𝜑𝑋𝐴)
Assertion
Ref Expression
cnextfres (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋))

Proof of Theorem cnextfres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnextfres.j . . 3 (𝜑𝐽 ∈ Top)
2 cnextfres.k . . 3 (𝜑𝐾 ∈ Haus)
3 cnextfres.1 . . . . 5 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
4 eqid 2738 . . . . . 6 (𝐽t 𝐴) = (𝐽t 𝐴)
5 cnextfres.b . . . . . 6 𝐵 = 𝐾
64, 5cnf 21990 . . . . 5 (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) → 𝐹: (𝐽t 𝐴)⟶𝐵)
73, 6syl 17 . . . 4 (𝜑𝐹: (𝐽t 𝐴)⟶𝐵)
8 cnextfres.a . . . . . 6 (𝜑𝐴𝐶)
9 cnextfres.c . . . . . . 7 𝐶 = 𝐽
109restuni 21906 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 = (𝐽t 𝐴))
111, 8, 10syl2anc 587 . . . . 5 (𝜑𝐴 = (𝐽t 𝐴))
1211feq2d 6484 . . . 4 (𝜑 → (𝐹:𝐴𝐵𝐹: (𝐽t 𝐴)⟶𝐵))
137, 12mpbird 260 . . 3 (𝜑𝐹:𝐴𝐵)
149, 5cnextfun 22808 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
151, 2, 13, 8, 14syl22anc 838 . 2 (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹))
169sscls 21800 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
171, 8, 16syl2anc 587 . . . . . 6 (𝜑𝐴 ⊆ ((cls‘𝐽)‘𝐴))
18 cnextfres.x . . . . . 6 (𝜑𝑋𝐴)
1917, 18sseldd 3876 . . . . 5 (𝜑𝑋 ∈ ((cls‘𝐽)‘𝐴))
209, 5, 1, 8, 3, 18flfcntr 22787 . . . . 5 (𝜑 → (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
21 sneq 4523 . . . . . . . . . 10 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2221fveq2d 6672 . . . . . . . . 9 (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋}))
2322oveq1d 7179 . . . . . . . 8 (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
2423oveq2d 7180 . . . . . . 7 (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
2524fveq1d 6670 . . . . . 6 (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
2625opeliunxp2 5675 . . . . 5 (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
2719, 20, 26sylanbrc 586 . . . 4 (𝜑 → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
28 haustop 22075 . . . . . 6 (𝐾 ∈ Haus → 𝐾 ∈ Top)
292, 28syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
309, 5cnextfval 22806 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
311, 29, 13, 8, 30syl22anc 838 . . . 4 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
3227, 31eleqtrrd 2836 . . 3 (𝜑 → ⟨𝑋, (𝐹𝑋)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
33 df-br 5028 . . 3 (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
3432, 33sylibr 237 . 2 (𝜑𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋))
35 funbrfv 6714 . 2 (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋)))
3615, 34, 35sylc 65 1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113  wss 3841  {csn 4513  cop 4519   cuni 4793   ciun 4878   class class class wbr 5027   × cxp 5517  Fun wfun 6327  wf 6329  cfv 6333  (class class class)co 7164  t crest 16790  Topctop 21637  clsccl 21762  neicnei 21841   Cn ccn 21968  Hauscha 22052   fLimf cflf 22679  CnExtccnext 22803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-iin 4881  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-map 8432  df-pm 8433  df-en 8549  df-fin 8552  df-fi 8941  df-rest 16792  df-topgen 16813  df-fbas 20207  df-fg 20208  df-top 21638  df-topon 21655  df-bases 21690  df-cld 21763  df-ntr 21764  df-cls 21765  df-nei 21842  df-cn 21971  df-cnp 21972  df-haus 22059  df-fil 22590  df-fm 22682  df-flim 22683  df-flf 22684  df-cnext 22804
This theorem is referenced by:  rrhqima  31526
  Copyright terms: Public domain W3C validator