Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnextfres | Structured version Visualization version GIF version |
Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 29-Aug-2020.) |
Ref | Expression |
---|---|
cnextfres.c | ⊢ 𝐶 = ∪ 𝐽 |
cnextfres.b | ⊢ 𝐵 = ∪ 𝐾 |
cnextfres.j | ⊢ (𝜑 → 𝐽 ∈ Top) |
cnextfres.k | ⊢ (𝜑 → 𝐾 ∈ Haus) |
cnextfres.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
cnextfres.1 | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
cnextfres.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
cnextfres | ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnextfres.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | cnextfres.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Haus) | |
3 | cnextfres.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) | |
4 | eqid 2738 | . . . . . 6 ⊢ ∪ (𝐽 ↾t 𝐴) = ∪ (𝐽 ↾t 𝐴) | |
5 | cnextfres.b | . . . . . 6 ⊢ 𝐵 = ∪ 𝐾 | |
6 | 4, 5 | cnf 22305 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) → 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵) |
7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵) |
8 | cnextfres.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
9 | cnextfres.c | . . . . . . 7 ⊢ 𝐶 = ∪ 𝐽 | |
10 | 9 | restuni 22221 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
11 | 1, 8, 10 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
12 | 11 | feq2d 6570 | . . . 4 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵)) |
13 | 7, 12 | mpbird 256 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
14 | 9, 5 | cnextfun 23123 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹)) |
15 | 1, 2, 13, 8, 14 | syl22anc 835 | . 2 ⊢ (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹)) |
16 | 9 | sscls 22115 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
17 | 1, 8, 16 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
18 | cnextfres.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
19 | 17, 18 | sseldd 3918 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ((cls‘𝐽)‘𝐴)) |
20 | 9, 5, 1, 8, 3, 18 | flfcntr 23102 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
21 | sneq 4568 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
22 | 21 | fveq2d 6760 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋})) |
23 | 22 | oveq1d 7270 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)) |
24 | 23 | oveq2d 7271 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))) |
25 | 24 | fveq1d 6758 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
26 | 25 | opeliunxp2 5736 | . . . . 5 ⊢ (〈𝑋, (𝐹‘𝑋)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))) |
27 | 19, 20, 26 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → 〈𝑋, (𝐹‘𝑋)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
28 | haustop 22390 | . . . . . 6 ⊢ (𝐾 ∈ Haus → 𝐾 ∈ Top) | |
29 | 2, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Top) |
30 | 9, 5 | cnextfval 23121 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
31 | 1, 29, 13, 8, 30 | syl22anc 835 | . . . 4 ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
32 | 27, 31 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 〈𝑋, (𝐹‘𝑋)〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) |
33 | df-br 5071 | . . 3 ⊢ (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋) ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) | |
34 | 32, 33 | sylibr 233 | . 2 ⊢ (𝜑 → 𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋)) |
35 | funbrfv 6802 | . 2 ⊢ (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋))) | |
36 | 15, 34, 35 | sylc 65 | 1 ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 〈cop 4564 ∪ cuni 4836 ∪ ciun 4921 class class class wbr 5070 × cxp 5578 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 Topctop 21950 clsccl 22077 neicnei 22156 Cn ccn 22283 Hauscha 22367 fLimf cflf 22994 CnExtccnext 23118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-map 8575 df-pm 8576 df-en 8692 df-fin 8695 df-fi 9100 df-rest 17050 df-topgen 17071 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-cn 22286 df-cnp 22287 df-haus 22374 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-cnext 23119 |
This theorem is referenced by: rrhqima 31864 |
Copyright terms: Public domain | W3C validator |