![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnextfres | Structured version Visualization version GIF version |
Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 29-Aug-2020.) |
Ref | Expression |
---|---|
cnextfres.c | ⊢ 𝐶 = ∪ 𝐽 |
cnextfres.b | ⊢ 𝐵 = ∪ 𝐾 |
cnextfres.j | ⊢ (𝜑 → 𝐽 ∈ Top) |
cnextfres.k | ⊢ (𝜑 → 𝐾 ∈ Haus) |
cnextfres.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
cnextfres.1 | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
cnextfres.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
cnextfres | ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnextfres.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | cnextfres.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Haus) | |
3 | cnextfres.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) | |
4 | eqid 2735 | . . . . . 6 ⊢ ∪ (𝐽 ↾t 𝐴) = ∪ (𝐽 ↾t 𝐴) | |
5 | cnextfres.b | . . . . . 6 ⊢ 𝐵 = ∪ 𝐾 | |
6 | 4, 5 | cnf 23270 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) → 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵) |
7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵) |
8 | cnextfres.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
9 | cnextfres.c | . . . . . . 7 ⊢ 𝐶 = ∪ 𝐽 | |
10 | 9 | restuni 23186 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
11 | 1, 8, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
12 | 11 | feq2d 6723 | . . . 4 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵)) |
13 | 7, 12 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
14 | 9, 5 | cnextfun 24088 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹)) |
15 | 1, 2, 13, 8, 14 | syl22anc 839 | . 2 ⊢ (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹)) |
16 | 9 | sscls 23080 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
17 | 1, 8, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
18 | cnextfres.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
19 | 17, 18 | sseldd 3996 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ((cls‘𝐽)‘𝐴)) |
20 | 9, 5, 1, 8, 3, 18 | flfcntr 24067 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
21 | sneq 4641 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
22 | 21 | fveq2d 6911 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋})) |
23 | 22 | oveq1d 7446 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)) |
24 | 23 | oveq2d 7447 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))) |
25 | 24 | fveq1d 6909 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
26 | 25 | opeliunxp2 5852 | . . . . 5 ⊢ (〈𝑋, (𝐹‘𝑋)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))) |
27 | 19, 20, 26 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 〈𝑋, (𝐹‘𝑋)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
28 | haustop 23355 | . . . . . 6 ⊢ (𝐾 ∈ Haus → 𝐾 ∈ Top) | |
29 | 2, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Top) |
30 | 9, 5 | cnextfval 24086 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
31 | 1, 29, 13, 8, 30 | syl22anc 839 | . . . 4 ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
32 | 27, 31 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 〈𝑋, (𝐹‘𝑋)〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) |
33 | df-br 5149 | . . 3 ⊢ (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋) ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) | |
34 | 32, 33 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋)) |
35 | funbrfv 6958 | . 2 ⊢ (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋))) | |
36 | 15, 34, 35 | sylc 65 | 1 ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 {csn 4631 〈cop 4637 ∪ cuni 4912 ∪ ciun 4996 class class class wbr 5148 × cxp 5687 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↾t crest 17467 Topctop 22915 clsccl 23042 neicnei 23121 Cn ccn 23248 Hauscha 23332 fLimf cflf 23959 CnExtccnext 24083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-map 8867 df-pm 8868 df-en 8985 df-fin 8988 df-fi 9449 df-rest 17469 df-topgen 17490 df-fbas 21379 df-fg 21380 df-top 22916 df-topon 22933 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-cn 23251 df-cnp 23252 df-haus 23339 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-cnext 24084 |
This theorem is referenced by: rrhqima 33977 |
Copyright terms: Public domain | W3C validator |