MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres Structured version   Visualization version   GIF version

Theorem cnextfres 22676
Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 29-Aug-2020.)
Hypotheses
Ref Expression
cnextfres.c 𝐶 = 𝐽
cnextfres.b 𝐵 = 𝐾
cnextfres.j (𝜑𝐽 ∈ Top)
cnextfres.k (𝜑𝐾 ∈ Haus)
cnextfres.a (𝜑𝐴𝐶)
cnextfres.1 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
cnextfres.x (𝜑𝑋𝐴)
Assertion
Ref Expression
cnextfres (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋))

Proof of Theorem cnextfres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnextfres.j . . 3 (𝜑𝐽 ∈ Top)
2 cnextfres.k . . 3 (𝜑𝐾 ∈ Haus)
3 cnextfres.1 . . . . 5 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
4 eqid 2821 . . . . . 6 (𝐽t 𝐴) = (𝐽t 𝐴)
5 cnextfres.b . . . . . 6 𝐵 = 𝐾
64, 5cnf 21853 . . . . 5 (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) → 𝐹: (𝐽t 𝐴)⟶𝐵)
73, 6syl 17 . . . 4 (𝜑𝐹: (𝐽t 𝐴)⟶𝐵)
8 cnextfres.a . . . . . 6 (𝜑𝐴𝐶)
9 cnextfres.c . . . . . . 7 𝐶 = 𝐽
109restuni 21769 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 = (𝐽t 𝐴))
111, 8, 10syl2anc 586 . . . . 5 (𝜑𝐴 = (𝐽t 𝐴))
1211feq2d 6499 . . . 4 (𝜑 → (𝐹:𝐴𝐵𝐹: (𝐽t 𝐴)⟶𝐵))
137, 12mpbird 259 . . 3 (𝜑𝐹:𝐴𝐵)
149, 5cnextfun 22671 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
151, 2, 13, 8, 14syl22anc 836 . 2 (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹))
169sscls 21663 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
171, 8, 16syl2anc 586 . . . . . 6 (𝜑𝐴 ⊆ ((cls‘𝐽)‘𝐴))
18 cnextfres.x . . . . . 6 (𝜑𝑋𝐴)
1917, 18sseldd 3967 . . . . 5 (𝜑𝑋 ∈ ((cls‘𝐽)‘𝐴))
209, 5, 1, 8, 3, 18flfcntr 22650 . . . . 5 (𝜑 → (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
21 sneq 4576 . . . . . . . . . 10 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2221fveq2d 6673 . . . . . . . . 9 (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋}))
2322oveq1d 7170 . . . . . . . 8 (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
2423oveq2d 7171 . . . . . . 7 (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
2524fveq1d 6671 . . . . . 6 (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
2625opeliunxp2 5708 . . . . 5 (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
2719, 20, 26sylanbrc 585 . . . 4 (𝜑 → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
28 haustop 21938 . . . . . 6 (𝐾 ∈ Haus → 𝐾 ∈ Top)
292, 28syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
309, 5cnextfval 22669 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
311, 29, 13, 8, 30syl22anc 836 . . . 4 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
3227, 31eleqtrrd 2916 . . 3 (𝜑 → ⟨𝑋, (𝐹𝑋)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
33 df-br 5066 . . 3 (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
3432, 33sylibr 236 . 2 (𝜑𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋))
35 funbrfv 6715 . 2 (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋)))
3615, 34, 35sylc 65 1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wss 3935  {csn 4566  cop 4572   cuni 4837   ciun 4918   class class class wbr 5065   × cxp 5552  Fun wfun 6348  wf 6350  cfv 6354  (class class class)co 7155  t crest 16693  Topctop 21500  clsccl 21625  neicnei 21704   Cn ccn 21831  Hauscha 21915   fLimf cflf 22542  CnExtccnext 22666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-fin 8512  df-fi 8874  df-rest 16695  df-topgen 16716  df-fbas 20541  df-fg 20542  df-top 21501  df-topon 21518  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-cn 21834  df-cnp 21835  df-haus 21922  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-cnext 22667
This theorem is referenced by:  rrhqima  31255
  Copyright terms: Public domain W3C validator