| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnextfres | Structured version Visualization version GIF version | ||
| Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 29-Aug-2020.) |
| Ref | Expression |
|---|---|
| cnextfres.c | ⊢ 𝐶 = ∪ 𝐽 |
| cnextfres.b | ⊢ 𝐵 = ∪ 𝐾 |
| cnextfres.j | ⊢ (𝜑 → 𝐽 ∈ Top) |
| cnextfres.k | ⊢ (𝜑 → 𝐾 ∈ Haus) |
| cnextfres.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| cnextfres.1 | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| cnextfres.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| cnextfres | ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextfres.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | cnextfres.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Haus) | |
| 3 | cnextfres.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) | |
| 4 | eqid 2730 | . . . . . 6 ⊢ ∪ (𝐽 ↾t 𝐴) = ∪ (𝐽 ↾t 𝐴) | |
| 5 | cnextfres.b | . . . . . 6 ⊢ 𝐵 = ∪ 𝐾 | |
| 6 | 4, 5 | cnf 23140 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) → 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵) |
| 7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵) |
| 8 | cnextfres.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 9 | cnextfres.c | . . . . . . 7 ⊢ 𝐶 = ∪ 𝐽 | |
| 10 | 9 | restuni 23056 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 11 | 1, 8, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 12 | 11 | feq2d 6675 | . . . 4 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵)) |
| 13 | 7, 12 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 14 | 9, 5 | cnextfun 23958 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹)) |
| 15 | 1, 2, 13, 8, 14 | syl22anc 838 | . 2 ⊢ (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹)) |
| 16 | 9 | sscls 22950 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
| 17 | 1, 8, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
| 18 | cnextfres.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 19 | 17, 18 | sseldd 3950 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ((cls‘𝐽)‘𝐴)) |
| 20 | 9, 5, 1, 8, 3, 18 | flfcntr 23937 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
| 21 | sneq 4602 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
| 22 | 21 | fveq2d 6865 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋})) |
| 23 | 22 | oveq1d 7405 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)) |
| 24 | 23 | oveq2d 7406 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))) |
| 25 | 24 | fveq1d 6863 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
| 26 | 25 | opeliunxp2 5805 | . . . . 5 ⊢ (〈𝑋, (𝐹‘𝑋)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))) |
| 27 | 19, 20, 26 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 〈𝑋, (𝐹‘𝑋)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
| 28 | haustop 23225 | . . . . . 6 ⊢ (𝐾 ∈ Haus → 𝐾 ∈ Top) | |
| 29 | 2, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 30 | 9, 5 | cnextfval 23956 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
| 31 | 1, 29, 13, 8, 30 | syl22anc 838 | . . . 4 ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
| 32 | 27, 31 | eleqtrrd 2832 | . . 3 ⊢ (𝜑 → 〈𝑋, (𝐹‘𝑋)〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) |
| 33 | df-br 5111 | . . 3 ⊢ (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋) ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) | |
| 34 | 32, 33 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋)) |
| 35 | funbrfv 6912 | . 2 ⊢ (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋))) | |
| 36 | 15, 34, 35 | sylc 65 | 1 ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 {csn 4592 〈cop 4598 ∪ cuni 4874 ∪ ciun 4958 class class class wbr 5110 × cxp 5639 Fun wfun 6508 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↾t crest 17390 Topctop 22787 clsccl 22912 neicnei 22991 Cn ccn 23118 Hauscha 23202 fLimf cflf 23829 CnExtccnext 23953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-map 8804 df-pm 8805 df-en 8922 df-fin 8925 df-fi 9369 df-rest 17392 df-topgen 17413 df-fbas 21268 df-fg 21269 df-top 22788 df-topon 22805 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-cn 23121 df-cnp 23122 df-haus 23209 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-cnext 23954 |
| This theorem is referenced by: rrhqima 34011 |
| Copyright terms: Public domain | W3C validator |