![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnextfres | Structured version Visualization version GIF version |
Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 29-Aug-2020.) |
Ref | Expression |
---|---|
cnextfres.c | ⊢ 𝐶 = ∪ 𝐽 |
cnextfres.b | ⊢ 𝐵 = ∪ 𝐾 |
cnextfres.j | ⊢ (𝜑 → 𝐽 ∈ Top) |
cnextfres.k | ⊢ (𝜑 → 𝐾 ∈ Haus) |
cnextfres.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
cnextfres.1 | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
cnextfres.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
cnextfres | ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnextfres.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | cnextfres.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Haus) | |
3 | cnextfres.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) | |
4 | eqid 2740 | . . . . . 6 ⊢ ∪ (𝐽 ↾t 𝐴) = ∪ (𝐽 ↾t 𝐴) | |
5 | cnextfres.b | . . . . . 6 ⊢ 𝐵 = ∪ 𝐾 | |
6 | 4, 5 | cnf 23275 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) → 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵) |
7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵) |
8 | cnextfres.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
9 | cnextfres.c | . . . . . . 7 ⊢ 𝐶 = ∪ 𝐽 | |
10 | 9 | restuni 23191 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
11 | 1, 8, 10 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
12 | 11 | feq2d 6733 | . . . 4 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵)) |
13 | 7, 12 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
14 | 9, 5 | cnextfun 24093 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹)) |
15 | 1, 2, 13, 8, 14 | syl22anc 838 | . 2 ⊢ (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹)) |
16 | 9 | sscls 23085 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
17 | 1, 8, 16 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
18 | cnextfres.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
19 | 17, 18 | sseldd 4009 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ((cls‘𝐽)‘𝐴)) |
20 | 9, 5, 1, 8, 3, 18 | flfcntr 24072 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
21 | sneq 4658 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
22 | 21 | fveq2d 6924 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋})) |
23 | 22 | oveq1d 7463 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)) |
24 | 23 | oveq2d 7464 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))) |
25 | 24 | fveq1d 6922 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
26 | 25 | opeliunxp2 5863 | . . . . 5 ⊢ (〈𝑋, (𝐹‘𝑋)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ (𝐹‘𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))) |
27 | 19, 20, 26 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → 〈𝑋, (𝐹‘𝑋)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
28 | haustop 23360 | . . . . . 6 ⊢ (𝐾 ∈ Haus → 𝐾 ∈ Top) | |
29 | 2, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Top) |
30 | 9, 5 | cnextfval 24091 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
31 | 1, 29, 13, 8, 30 | syl22anc 838 | . . . 4 ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
32 | 27, 31 | eleqtrrd 2847 | . . 3 ⊢ (𝜑 → 〈𝑋, (𝐹‘𝑋)〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) |
33 | df-br 5167 | . . 3 ⊢ (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋) ↔ 〈𝑋, (𝐹‘𝑋)〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) | |
34 | 32, 33 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋)) |
35 | funbrfv 6971 | . 2 ⊢ (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹‘𝑋) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋))) | |
36 | 15, 34, 35 | sylc 65 | 1 ⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {csn 4648 〈cop 4654 ∪ cuni 4931 ∪ ciun 5015 class class class wbr 5166 × cxp 5698 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↾t crest 17480 Topctop 22920 clsccl 23047 neicnei 23126 Cn ccn 23253 Hauscha 23337 fLimf cflf 23964 CnExtccnext 24088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-map 8886 df-pm 8887 df-en 9004 df-fin 9007 df-fi 9480 df-rest 17482 df-topgen 17503 df-fbas 21384 df-fg 21385 df-top 22921 df-topon 22938 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-cn 23256 df-cnp 23257 df-haus 23344 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-cnext 24089 |
This theorem is referenced by: rrhqima 33960 |
Copyright terms: Public domain | W3C validator |