MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres Structured version   Visualization version   GIF version

Theorem cnextfres 23956
Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 29-Aug-2020.)
Hypotheses
Ref Expression
cnextfres.c 𝐶 = 𝐽
cnextfres.b 𝐵 = 𝐾
cnextfres.j (𝜑𝐽 ∈ Top)
cnextfres.k (𝜑𝐾 ∈ Haus)
cnextfres.a (𝜑𝐴𝐶)
cnextfres.1 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
cnextfres.x (𝜑𝑋𝐴)
Assertion
Ref Expression
cnextfres (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋))

Proof of Theorem cnextfres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnextfres.j . . 3 (𝜑𝐽 ∈ Top)
2 cnextfres.k . . 3 (𝜑𝐾 ∈ Haus)
3 cnextfres.1 . . . . 5 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
4 eqid 2729 . . . . . 6 (𝐽t 𝐴) = (𝐽t 𝐴)
5 cnextfres.b . . . . . 6 𝐵 = 𝐾
64, 5cnf 23133 . . . . 5 (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) → 𝐹: (𝐽t 𝐴)⟶𝐵)
73, 6syl 17 . . . 4 (𝜑𝐹: (𝐽t 𝐴)⟶𝐵)
8 cnextfres.a . . . . . 6 (𝜑𝐴𝐶)
9 cnextfres.c . . . . . . 7 𝐶 = 𝐽
109restuni 23049 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 = (𝐽t 𝐴))
111, 8, 10syl2anc 584 . . . . 5 (𝜑𝐴 = (𝐽t 𝐴))
1211feq2d 6672 . . . 4 (𝜑 → (𝐹:𝐴𝐵𝐹: (𝐽t 𝐴)⟶𝐵))
137, 12mpbird 257 . . 3 (𝜑𝐹:𝐴𝐵)
149, 5cnextfun 23951 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
151, 2, 13, 8, 14syl22anc 838 . 2 (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹))
169sscls 22943 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
171, 8, 16syl2anc 584 . . . . . 6 (𝜑𝐴 ⊆ ((cls‘𝐽)‘𝐴))
18 cnextfres.x . . . . . 6 (𝜑𝑋𝐴)
1917, 18sseldd 3947 . . . . 5 (𝜑𝑋 ∈ ((cls‘𝐽)‘𝐴))
209, 5, 1, 8, 3, 18flfcntr 23930 . . . . 5 (𝜑 → (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
21 sneq 4599 . . . . . . . . . 10 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2221fveq2d 6862 . . . . . . . . 9 (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋}))
2322oveq1d 7402 . . . . . . . 8 (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
2423oveq2d 7403 . . . . . . 7 (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
2524fveq1d 6860 . . . . . 6 (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
2625opeliunxp2 5802 . . . . 5 (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
2719, 20, 26sylanbrc 583 . . . 4 (𝜑 → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
28 haustop 23218 . . . . . 6 (𝐾 ∈ Haus → 𝐾 ∈ Top)
292, 28syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
309, 5cnextfval 23949 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
311, 29, 13, 8, 30syl22anc 838 . . . 4 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
3227, 31eleqtrrd 2831 . . 3 (𝜑 → ⟨𝑋, (𝐹𝑋)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
33 df-br 5108 . . 3 (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
3432, 33sylibr 234 . 2 (𝜑𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋))
35 funbrfv 6909 . 2 (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹)(𝐹𝑋) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋)))
3615, 34, 35sylc 65 1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  {csn 4589  cop 4595   cuni 4871   ciun 4955   class class class wbr 5107   × cxp 5636  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  t crest 17383  Topctop 22780  clsccl 22905  neicnei 22984   Cn ccn 23111  Hauscha 23195   fLimf cflf 23822  CnExtccnext 23946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-map 8801  df-pm 8802  df-en 8919  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-fbas 21261  df-fg 21262  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-haus 23202  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-cnext 23947
This theorem is referenced by:  rrhqima  34004
  Copyright terms: Public domain W3C validator