|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sshaus | Structured version Visualization version GIF version | ||
| Description: A topology finer than a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 | 
| Ref | Expression | 
|---|---|
| sshaus | ⊢ ((𝐽 ∈ Haus ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Haus) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | t1sep.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | haustop 23340 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) | |
| 3 | cnhaus 23363 | . 2 ⊢ ((𝐽 ∈ Haus ∧ ( I ↾ 𝑋):𝑋–1-1→𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ Haus) | |
| 4 | 1, 2, 3 | sshauslem 23381 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Haus) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 ∪ cuni 4906 I cid 5576 ↾ cres 5686 ‘cfv 6560 TopOnctopon 22917 Hauscha 23317 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 df-top 22901 df-topon 22918 df-cn 23236 df-haus 23324 | 
| This theorem is referenced by: kgenhaus 23553 | 
| Copyright terms: Public domain | W3C validator |