MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres1 Structured version   Visualization version   GIF version

Theorem cnextfres1 23127
Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
cnextcn.8 (𝜑𝐾 ∈ Reg)
cnextfres1.1 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
Assertion
Ref Expression
cnextfres1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥

Proof of Theorem cnextfres1
Dummy variables 𝑦 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnextf.1 . . . . 5 𝐶 = 𝐽
2 cnextf.2 . . . . 5 𝐵 = 𝐾
3 cnextf.3 . . . . 5 (𝜑𝐽 ∈ Top)
4 cnextf.4 . . . . 5 (𝜑𝐾 ∈ Haus)
5 cnextf.5 . . . . 5 (𝜑𝐹:𝐴𝐵)
6 cnextf.a . . . . 5 (𝜑𝐴𝐶)
7 cnextf.6 . . . . 5 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
8 cnextf.7 . . . . 5 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
91, 2, 3, 4, 5, 6, 7, 8cnextf 23125 . . . 4 (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
109ffnd 6585 . . 3 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶)
11 fnssres 6539 . . 3 ((((𝐽CnExt𝐾)‘𝐹) Fn 𝐶𝐴𝐶) → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴)
1210, 6, 11syl2anc 583 . 2 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴)
135ffnd 6585 . 2 (𝜑𝐹 Fn 𝐴)
14 fvres 6775 . . . 4 (𝑦𝐴 → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦))
1514adantl 481 . . 3 ((𝜑𝑦𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦))
166sselda 3917 . . . 4 ((𝜑𝑦𝐴) → 𝑦𝐶)
171, 2, 3, 4, 5, 6, 7, 8cnextfvval 23124 . . . 4 ((𝜑𝑦𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
1816, 17syldan 590 . . 3 ((𝜑𝑦𝐴) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
195ffvelrnda 6943 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
20 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
211restuni 22221 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 = (𝐽t 𝐴))
223, 6, 21syl2anc 583 . . . . . . . . . . . . 13 (𝜑𝐴 = (𝐽t 𝐴))
2322adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 = (𝐽t 𝐴))
2420, 23eleqtrd 2841 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 (𝐽t 𝐴))
25 cnextfres1.1 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
26 fvex 6769 . . . . . . . . . . . . . . . . 17 ((cls‘𝐽)‘𝐴) ∈ V
277, 26eqeltrrdi 2848 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ V)
2827, 6ssexd 5243 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ V)
29 resttop 22219 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
303, 28, 29syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → (𝐽t 𝐴) ∈ Top)
31 haustop 22390 . . . . . . . . . . . . . . 15 (𝐾 ∈ Haus → 𝐾 ∈ Top)
324, 31syl 17 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Top)
3322feq2d 6570 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹:𝐴𝐵𝐹: (𝐽t 𝐴)⟶𝐵))
345, 33mpbid 231 . . . . . . . . . . . . . 14 (𝜑𝐹: (𝐽t 𝐴)⟶𝐵)
35 eqid 2738 . . . . . . . . . . . . . . 15 (𝐽t 𝐴) = (𝐽t 𝐴)
3635, 2cnnei 22341 . . . . . . . . . . . . . 14 (((𝐽t 𝐴) ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹: (𝐽t 𝐴)⟶𝐵) → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤))
3730, 32, 34, 36syl3anc 1369 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤))
3825, 37mpbid 231 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
3938r19.21bi 3132 . . . . . . . . . . 11 ((𝜑𝑦 (𝐽t 𝐴)) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
4024, 39syldan 590 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
4140r19.21bi 3132 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → ∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
42 snssi 4738 . . . . . . . . . . . 12 (𝑦𝐴 → {𝑦} ⊆ 𝐴)
431neitr 22239 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴𝐶 ∧ {𝑦} ⊆ 𝐴) → ((nei‘(𝐽t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
443, 6, 42, 43syl2an3an 1420 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → ((nei‘(𝐽t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
4544rexeqdv 3340 . . . . . . . . . 10 ((𝜑𝑦𝐴) → (∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤))
4645adantr 480 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → (∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤))
4741, 46mpbid 231 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)
4847ralrimiva 3107 . . . . . . 7 ((𝜑𝑦𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)
494adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝐾 ∈ Haus)
502toptopon 21974 . . . . . . . . . 10 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵))
5150biimpi 215 . . . . . . . . 9 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝐵))
5249, 31, 513syl 18 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐾 ∈ (TopOn‘𝐵))
537adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((cls‘𝐽)‘𝐴) = 𝐶)
5416, 53eleqtrrd 2842 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ ((cls‘𝐽)‘𝐴))
551toptopon 21974 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
563, 55sylib 217 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝐶))
5756adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐽 ∈ (TopOn‘𝐶))
586adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴𝐶)
59 trnei 22951 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑦𝐶) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴)))
6057, 58, 16, 59syl3anc 1369 . . . . . . . . 9 ((𝜑𝑦𝐴) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴)))
6154, 60mpbid 231 . . . . . . . 8 ((𝜑𝑦𝐴) → (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴))
625adantr 480 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐹:𝐴𝐵)
63 flfnei 23050 . . . . . . . 8 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)))
6452, 61, 62, 63syl3anc 1369 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)))
6519, 48, 64mpbir2and 709 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
66 eleq1w 2821 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐶𝑦𝐶))
6766anbi2d 628 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑𝑥𝐶) ↔ (𝜑𝑦𝐶)))
68 sneq 4568 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → {𝑥} = {𝑦})
6968fveq2d 6760 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑦}))
7069oveq1d 7270 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
7170oveq2d 7271 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)))
7271fveq1d 6758 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
7372neeq1d 3002 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅))
7467, 73imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) ↔ ((𝜑𝑦𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)))
7574, 8chvarvv 2003 . . . . . . . 8 ((𝜑𝑦𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)
7616, 75syldan 590 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)
772hausflf2 23057 . . . . . . 7 (((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o)
7849, 61, 62, 76, 77syl31anc 1371 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o)
79 en1eqsn 8977 . . . . . 6 (((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
8065, 78, 79syl2anc 583 . . . . 5 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
8180unieqd 4850 . . . 4 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
82 fvex 6769 . . . . 5 (𝐹𝑦) ∈ V
8382unisn 4858 . . . 4 {(𝐹𝑦)} = (𝐹𝑦)
8481, 83eqtrdi 2795 . . 3 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = (𝐹𝑦))
8515, 18, 843eqtrd 2782 . 2 ((𝜑𝑦𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (𝐹𝑦))
8612, 13, 85eqfnfvd 6894 1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  wss 3883  c0 4253  {csn 4558   cuni 4836   class class class wbr 5070  cres 5582  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1oc1o 8260  cen 8688  t crest 17048  Topctop 21950  TopOnctopon 21967  clsccl 22077  neicnei 22156   Cn ccn 22283  Hauscha 22367  Regcreg 22368  Filcfil 22904   fLimf cflf 22994  CnExtccnext 23118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-haus 22374  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-cnext 23119
This theorem is referenced by:  rrhre  31871
  Copyright terms: Public domain W3C validator