MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres1 Structured version   Visualization version   GIF version

Theorem cnextfres1 22937
Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
cnextcn.8 (𝜑𝐾 ∈ Reg)
cnextfres1.1 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
Assertion
Ref Expression
cnextfres1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥

Proof of Theorem cnextfres1
Dummy variables 𝑦 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnextf.1 . . . . 5 𝐶 = 𝐽
2 cnextf.2 . . . . 5 𝐵 = 𝐾
3 cnextf.3 . . . . 5 (𝜑𝐽 ∈ Top)
4 cnextf.4 . . . . 5 (𝜑𝐾 ∈ Haus)
5 cnextf.5 . . . . 5 (𝜑𝐹:𝐴𝐵)
6 cnextf.a . . . . 5 (𝜑𝐴𝐶)
7 cnextf.6 . . . . 5 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
8 cnextf.7 . . . . 5 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
91, 2, 3, 4, 5, 6, 7, 8cnextf 22935 . . . 4 (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
109ffnd 6535 . . 3 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶)
11 fnssres 6489 . . 3 ((((𝐽CnExt𝐾)‘𝐹) Fn 𝐶𝐴𝐶) → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴)
1210, 6, 11syl2anc 587 . 2 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴)
135ffnd 6535 . 2 (𝜑𝐹 Fn 𝐴)
14 fvres 6725 . . . 4 (𝑦𝐴 → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦))
1514adantl 485 . . 3 ((𝜑𝑦𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦))
166sselda 3891 . . . 4 ((𝜑𝑦𝐴) → 𝑦𝐶)
171, 2, 3, 4, 5, 6, 7, 8cnextfvval 22934 . . . 4 ((𝜑𝑦𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
1816, 17syldan 594 . . 3 ((𝜑𝑦𝐴) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
195ffvelrnda 6893 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
20 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
211restuni 22031 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 = (𝐽t 𝐴))
223, 6, 21syl2anc 587 . . . . . . . . . . . . 13 (𝜑𝐴 = (𝐽t 𝐴))
2322adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 = (𝐽t 𝐴))
2420, 23eleqtrd 2836 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 (𝐽t 𝐴))
25 cnextfres1.1 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
26 fvex 6719 . . . . . . . . . . . . . . . . 17 ((cls‘𝐽)‘𝐴) ∈ V
277, 26eqeltrrdi 2843 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ V)
2827, 6ssexd 5206 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ V)
29 resttop 22029 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
303, 28, 29syl2anc 587 . . . . . . . . . . . . . 14 (𝜑 → (𝐽t 𝐴) ∈ Top)
31 haustop 22200 . . . . . . . . . . . . . . 15 (𝐾 ∈ Haus → 𝐾 ∈ Top)
324, 31syl 17 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Top)
3322feq2d 6520 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹:𝐴𝐵𝐹: (𝐽t 𝐴)⟶𝐵))
345, 33mpbid 235 . . . . . . . . . . . . . 14 (𝜑𝐹: (𝐽t 𝐴)⟶𝐵)
35 eqid 2734 . . . . . . . . . . . . . . 15 (𝐽t 𝐴) = (𝐽t 𝐴)
3635, 2cnnei 22151 . . . . . . . . . . . . . 14 (((𝐽t 𝐴) ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹: (𝐽t 𝐴)⟶𝐵) → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤))
3730, 32, 34, 36syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤))
3825, 37mpbid 235 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
3938r19.21bi 3123 . . . . . . . . . . 11 ((𝜑𝑦 (𝐽t 𝐴)) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
4024, 39syldan 594 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
4140r19.21bi 3123 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → ∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
42 snssi 4711 . . . . . . . . . . . 12 (𝑦𝐴 → {𝑦} ⊆ 𝐴)
431neitr 22049 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴𝐶 ∧ {𝑦} ⊆ 𝐴) → ((nei‘(𝐽t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
443, 6, 42, 43syl2an3an 1424 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → ((nei‘(𝐽t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
4544rexeqdv 3319 . . . . . . . . . 10 ((𝜑𝑦𝐴) → (∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤))
4645adantr 484 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → (∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤))
4741, 46mpbid 235 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)
4847ralrimiva 3098 . . . . . . 7 ((𝜑𝑦𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)
494adantr 484 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝐾 ∈ Haus)
502toptopon 21786 . . . . . . . . . 10 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵))
5150biimpi 219 . . . . . . . . 9 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝐵))
5249, 31, 513syl 18 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐾 ∈ (TopOn‘𝐵))
537adantr 484 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((cls‘𝐽)‘𝐴) = 𝐶)
5416, 53eleqtrrd 2837 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ ((cls‘𝐽)‘𝐴))
551toptopon 21786 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
563, 55sylib 221 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝐶))
5756adantr 484 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐽 ∈ (TopOn‘𝐶))
586adantr 484 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴𝐶)
59 trnei 22761 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑦𝐶) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴)))
6057, 58, 16, 59syl3anc 1373 . . . . . . . . 9 ((𝜑𝑦𝐴) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴)))
6154, 60mpbid 235 . . . . . . . 8 ((𝜑𝑦𝐴) → (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴))
625adantr 484 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐹:𝐴𝐵)
63 flfnei 22860 . . . . . . . 8 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)))
6452, 61, 62, 63syl3anc 1373 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)))
6519, 48, 64mpbir2and 713 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
66 eleq1w 2816 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐶𝑦𝐶))
6766anbi2d 632 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑𝑥𝐶) ↔ (𝜑𝑦𝐶)))
68 sneq 4541 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → {𝑥} = {𝑦})
6968fveq2d 6710 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑦}))
7069oveq1d 7217 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
7170oveq2d 7218 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)))
7271fveq1d 6708 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
7372neeq1d 2994 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅))
7467, 73imbi12d 348 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) ↔ ((𝜑𝑦𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)))
7574, 8chvarvv 2007 . . . . . . . 8 ((𝜑𝑦𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)
7616, 75syldan 594 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)
772hausflf2 22867 . . . . . . 7 (((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o)
7849, 61, 62, 76, 77syl31anc 1375 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o)
79 en1eqsn 8893 . . . . . 6 (((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
8065, 78, 79syl2anc 587 . . . . 5 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
8180unieqd 4823 . . . 4 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
82 fvex 6719 . . . . 5 (𝐹𝑦) ∈ V
8382unisn 4831 . . . 4 {(𝐹𝑦)} = (𝐹𝑦)
8481, 83eqtrdi 2790 . . 3 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = (𝐹𝑦))
8515, 18, 843eqtrd 2778 . 2 ((𝜑𝑦𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (𝐹𝑦))
8612, 13, 85eqfnfvd 6844 1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2935  wral 3054  wrex 3055  Vcvv 3401  wss 3857  c0 4227  {csn 4531   cuni 4809   class class class wbr 5043  cres 5542  cima 5543   Fn wfn 6364  wf 6365  cfv 6369  (class class class)co 7202  1oc1o 8184  cen 8612  t crest 16897  Topctop 21762  TopOnctopon 21779  clsccl 21887  neicnei 21966   Cn ccn 22093  Hauscha 22177  Regcreg 22178  Filcfil 22714   fLimf cflf 22804  CnExtccnext 22928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-1o 8191  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fi 9016  df-rest 16899  df-topgen 16920  df-fbas 20332  df-fg 20333  df-top 21763  df-topon 21780  df-bases 21815  df-cld 21888  df-ntr 21889  df-cls 21890  df-nei 21967  df-cn 22096  df-cnp 22097  df-haus 22184  df-fil 22715  df-fm 22807  df-flim 22808  df-flf 22809  df-cnext 22929
This theorem is referenced by:  rrhre  31655
  Copyright terms: Public domain W3C validator