MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres1 Structured version   Visualization version   GIF version

Theorem cnextfres1 23971
Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
cnextcn.8 (𝜑𝐾 ∈ Reg)
cnextfres1.1 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
Assertion
Ref Expression
cnextfres1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥

Proof of Theorem cnextfres1
Dummy variables 𝑦 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnextf.1 . . . . 5 𝐶 = 𝐽
2 cnextf.2 . . . . 5 𝐵 = 𝐾
3 cnextf.3 . . . . 5 (𝜑𝐽 ∈ Top)
4 cnextf.4 . . . . 5 (𝜑𝐾 ∈ Haus)
5 cnextf.5 . . . . 5 (𝜑𝐹:𝐴𝐵)
6 cnextf.a . . . . 5 (𝜑𝐴𝐶)
7 cnextf.6 . . . . 5 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
8 cnextf.7 . . . . 5 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
91, 2, 3, 4, 5, 6, 7, 8cnextf 23969 . . . 4 (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
109ffnd 6657 . . 3 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶)
11 fnssres 6609 . . 3 ((((𝐽CnExt𝐾)‘𝐹) Fn 𝐶𝐴𝐶) → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴)
1210, 6, 11syl2anc 584 . 2 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴)
135ffnd 6657 . 2 (𝜑𝐹 Fn 𝐴)
14 fvres 6845 . . . 4 (𝑦𝐴 → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦))
1514adantl 481 . . 3 ((𝜑𝑦𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦))
166sselda 3937 . . . 4 ((𝜑𝑦𝐴) → 𝑦𝐶)
171, 2, 3, 4, 5, 6, 7, 8cnextfvval 23968 . . . 4 ((𝜑𝑦𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
1816, 17syldan 591 . . 3 ((𝜑𝑦𝐴) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
195ffvelcdmda 7022 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
20 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
211restuni 23065 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 = (𝐽t 𝐴))
223, 6, 21syl2anc 584 . . . . . . . . . . . . 13 (𝜑𝐴 = (𝐽t 𝐴))
2322adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 = (𝐽t 𝐴))
2420, 23eleqtrd 2830 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 (𝐽t 𝐴))
25 cnextfres1.1 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
26 fvex 6839 . . . . . . . . . . . . . . . . 17 ((cls‘𝐽)‘𝐴) ∈ V
277, 26eqeltrrdi 2837 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ V)
2827, 6ssexd 5266 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ V)
29 resttop 23063 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
303, 28, 29syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐽t 𝐴) ∈ Top)
31 haustop 23234 . . . . . . . . . . . . . . 15 (𝐾 ∈ Haus → 𝐾 ∈ Top)
324, 31syl 17 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Top)
3322feq2d 6640 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹:𝐴𝐵𝐹: (𝐽t 𝐴)⟶𝐵))
345, 33mpbid 232 . . . . . . . . . . . . . 14 (𝜑𝐹: (𝐽t 𝐴)⟶𝐵)
35 eqid 2729 . . . . . . . . . . . . . . 15 (𝐽t 𝐴) = (𝐽t 𝐴)
3635, 2cnnei 23185 . . . . . . . . . . . . . 14 (((𝐽t 𝐴) ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹: (𝐽t 𝐴)⟶𝐵) → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤))
3730, 32, 34, 36syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤))
3825, 37mpbid 232 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
3938r19.21bi 3221 . . . . . . . . . . 11 ((𝜑𝑦 (𝐽t 𝐴)) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
4024, 39syldan 591 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
4140r19.21bi 3221 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → ∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
42 snssi 4762 . . . . . . . . . . . 12 (𝑦𝐴 → {𝑦} ⊆ 𝐴)
431neitr 23083 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴𝐶 ∧ {𝑦} ⊆ 𝐴) → ((nei‘(𝐽t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
443, 6, 42, 43syl2an3an 1424 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → ((nei‘(𝐽t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
4544rexeqdv 3291 . . . . . . . . . 10 ((𝜑𝑦𝐴) → (∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤))
4645adantr 480 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → (∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤))
4741, 46mpbid 232 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)
4847ralrimiva 3121 . . . . . . 7 ((𝜑𝑦𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)
494adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝐾 ∈ Haus)
502toptopon 22820 . . . . . . . . . 10 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵))
5150biimpi 216 . . . . . . . . 9 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝐵))
5249, 31, 513syl 18 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐾 ∈ (TopOn‘𝐵))
537adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((cls‘𝐽)‘𝐴) = 𝐶)
5416, 53eleqtrrd 2831 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ ((cls‘𝐽)‘𝐴))
551toptopon 22820 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
563, 55sylib 218 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝐶))
5756adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐽 ∈ (TopOn‘𝐶))
586adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴𝐶)
59 trnei 23795 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑦𝐶) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴)))
6057, 58, 16, 59syl3anc 1373 . . . . . . . . 9 ((𝜑𝑦𝐴) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴)))
6154, 60mpbid 232 . . . . . . . 8 ((𝜑𝑦𝐴) → (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴))
625adantr 480 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐹:𝐴𝐵)
63 flfnei 23894 . . . . . . . 8 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)))
6452, 61, 62, 63syl3anc 1373 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)))
6519, 48, 64mpbir2and 713 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
66 eleq1w 2811 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐶𝑦𝐶))
6766anbi2d 630 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑𝑥𝐶) ↔ (𝜑𝑦𝐶)))
68 sneq 4589 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → {𝑥} = {𝑦})
6968fveq2d 6830 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑦}))
7069oveq1d 7368 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
7170oveq2d 7369 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)))
7271fveq1d 6828 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
7372neeq1d 2984 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅))
7467, 73imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) ↔ ((𝜑𝑦𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)))
7574, 8chvarvv 1989 . . . . . . . 8 ((𝜑𝑦𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)
7616, 75syldan 591 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)
772hausflf2 23901 . . . . . . 7 (((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o)
7849, 61, 62, 76, 77syl31anc 1375 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o)
79 en1eqsn 9177 . . . . . 6 (((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
8065, 78, 79syl2anc 584 . . . . 5 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
8180unieqd 4874 . . . 4 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
82 fvex 6839 . . . . 5 (𝐹𝑦) ∈ V
8382unisn 4880 . . . 4 {(𝐹𝑦)} = (𝐹𝑦)
8481, 83eqtrdi 2780 . . 3 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = (𝐹𝑦))
8515, 18, 843eqtrd 2768 . 2 ((𝜑𝑦𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (𝐹𝑦))
8612, 13, 85eqfnfvd 6972 1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  wss 3905  c0 4286  {csn 4579   cuni 4861   class class class wbr 5095  cres 5625  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  1oc1o 8388  cen 8876  t crest 17342  Topctop 22796  TopOnctopon 22813  clsccl 22921  neicnei 23000   Cn ccn 23127  Hauscha 23211  Regcreg 23212  Filcfil 23748   fLimf cflf 23838  CnExtccnext 23962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-1o 8395  df-map 8762  df-pm 8763  df-en 8880  df-fin 8883  df-fi 9320  df-rest 17344  df-topgen 17365  df-fbas 21276  df-fg 21277  df-top 22797  df-topon 22814  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-cn 23130  df-cnp 23131  df-haus 23218  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-cnext 23963
This theorem is referenced by:  rrhre  33987
  Copyright terms: Public domain W3C validator