MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres1 Structured version   Visualization version   GIF version

Theorem cnextfres1 23981
Description: 𝐹 and its extension by continuity agree on the domain of 𝐹. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
cnextcn.8 (𝜑𝐾 ∈ Reg)
cnextfres1.1 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
Assertion
Ref Expression
cnextfres1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥

Proof of Theorem cnextfres1
Dummy variables 𝑦 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnextf.1 . . . . 5 𝐶 = 𝐽
2 cnextf.2 . . . . 5 𝐵 = 𝐾
3 cnextf.3 . . . . 5 (𝜑𝐽 ∈ Top)
4 cnextf.4 . . . . 5 (𝜑𝐾 ∈ Haus)
5 cnextf.5 . . . . 5 (𝜑𝐹:𝐴𝐵)
6 cnextf.a . . . . 5 (𝜑𝐴𝐶)
7 cnextf.6 . . . . 5 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
8 cnextf.7 . . . . 5 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
91, 2, 3, 4, 5, 6, 7, 8cnextf 23979 . . . 4 (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
109ffnd 6652 . . 3 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶)
11 fnssres 6604 . . 3 ((((𝐽CnExt𝐾)‘𝐹) Fn 𝐶𝐴𝐶) → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴)
1210, 6, 11syl2anc 584 . 2 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴)
135ffnd 6652 . 2 (𝜑𝐹 Fn 𝐴)
14 fvres 6841 . . . 4 (𝑦𝐴 → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦))
1514adantl 481 . . 3 ((𝜑𝑦𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦))
166sselda 3934 . . . 4 ((𝜑𝑦𝐴) → 𝑦𝐶)
171, 2, 3, 4, 5, 6, 7, 8cnextfvval 23978 . . . 4 ((𝜑𝑦𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
1816, 17syldan 591 . . 3 ((𝜑𝑦𝐴) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
195ffvelcdmda 7017 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
20 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
211restuni 23075 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 = (𝐽t 𝐴))
223, 6, 21syl2anc 584 . . . . . . . . . . . . 13 (𝜑𝐴 = (𝐽t 𝐴))
2322adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 = (𝐽t 𝐴))
2420, 23eleqtrd 2833 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 (𝐽t 𝐴))
25 cnextfres1.1 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
26 fvex 6835 . . . . . . . . . . . . . . . . 17 ((cls‘𝐽)‘𝐴) ∈ V
277, 26eqeltrrdi 2840 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ V)
2827, 6ssexd 5262 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ V)
29 resttop 23073 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
303, 28, 29syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐽t 𝐴) ∈ Top)
31 haustop 23244 . . . . . . . . . . . . . . 15 (𝐾 ∈ Haus → 𝐾 ∈ Top)
324, 31syl 17 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Top)
3322feq2d 6635 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹:𝐴𝐵𝐹: (𝐽t 𝐴)⟶𝐵))
345, 33mpbid 232 . . . . . . . . . . . . . 14 (𝜑𝐹: (𝐽t 𝐴)⟶𝐵)
35 eqid 2731 . . . . . . . . . . . . . . 15 (𝐽t 𝐴) = (𝐽t 𝐴)
3635, 2cnnei 23195 . . . . . . . . . . . . . 14 (((𝐽t 𝐴) ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹: (𝐽t 𝐴)⟶𝐵) → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤))
3730, 32, 34, 36syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤))
3825, 37mpbid 232 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 (𝐽t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
3938r19.21bi 3224 . . . . . . . . . . 11 ((𝜑𝑦 (𝐽t 𝐴)) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
4024, 39syldan 591 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
4140r19.21bi 3224 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → ∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤)
42 snssi 4760 . . . . . . . . . . . 12 (𝑦𝐴 → {𝑦} ⊆ 𝐴)
431neitr 23093 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴𝐶 ∧ {𝑦} ⊆ 𝐴) → ((nei‘(𝐽t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
443, 6, 42, 43syl2an3an 1424 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → ((nei‘(𝐽t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
4544rexeqdv 3293 . . . . . . . . . 10 ((𝜑𝑦𝐴) → (∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤))
4645adantr 480 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → (∃𝑣 ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})(𝐹𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤))
4741, 46mpbid 232 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)
4847ralrimiva 3124 . . . . . . 7 ((𝜑𝑦𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)
494adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝐾 ∈ Haus)
502toptopon 22830 . . . . . . . . . 10 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵))
5150biimpi 216 . . . . . . . . 9 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝐵))
5249, 31, 513syl 18 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐾 ∈ (TopOn‘𝐵))
537adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((cls‘𝐽)‘𝐴) = 𝐶)
5416, 53eleqtrrd 2834 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ ((cls‘𝐽)‘𝐴))
551toptopon 22830 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
563, 55sylib 218 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝐶))
5756adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐽 ∈ (TopOn‘𝐶))
586adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴𝐶)
59 trnei 23805 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑦𝐶) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴)))
6057, 58, 16, 59syl3anc 1373 . . . . . . . . 9 ((𝜑𝑦𝐴) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴)))
6154, 60mpbid 232 . . . . . . . 8 ((𝜑𝑦𝐴) → (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴))
625adantr 480 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐹:𝐴𝐵)
63 flfnei 23904 . . . . . . . 8 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)))
6452, 61, 62, 63syl3anc 1373 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹𝑣) ⊆ 𝑤)))
6519, 48, 64mpbir2and 713 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
66 eleq1w 2814 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐶𝑦𝐶))
6766anbi2d 630 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑𝑥𝐶) ↔ (𝜑𝑦𝐶)))
68 sneq 4586 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → {𝑥} = {𝑦})
6968fveq2d 6826 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑦}))
7069oveq1d 7361 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
7170oveq2d 7362 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)))
7271fveq1d 6824 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
7372neeq1d 2987 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅))
7467, 73imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) ↔ ((𝜑𝑦𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)))
7574, 8chvarvv 1990 . . . . . . . 8 ((𝜑𝑦𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)
7616, 75syldan 591 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)
772hausflf2 23911 . . . . . . 7 (((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o)
7849, 61, 62, 76, 77syl31anc 1375 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o)
79 en1eqsn 9159 . . . . . 6 (((𝐹𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
8065, 78, 79syl2anc 584 . . . . 5 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
8180unieqd 4872 . . . 4 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹𝑦)})
82 fvex 6835 . . . . 5 (𝐹𝑦) ∈ V
8382unisn 4878 . . . 4 {(𝐹𝑦)} = (𝐹𝑦)
8481, 83eqtrdi 2782 . . 3 ((𝜑𝑦𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = (𝐹𝑦))
8515, 18, 843eqtrd 2770 . 2 ((𝜑𝑦𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (𝐹𝑦))
8612, 13, 85eqfnfvd 6967 1 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3902  c0 4283  {csn 4576   cuni 4859   class class class wbr 5091  cres 5618  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  1oc1o 8378  cen 8866  t crest 17321  Topctop 22806  TopOnctopon 22823  clsccl 22931  neicnei 23010   Cn ccn 23137  Hauscha 23221  Regcreg 23222  Filcfil 23758   fLimf cflf 23848  CnExtccnext 23972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-map 8752  df-pm 8753  df-en 8870  df-fin 8873  df-fi 9295  df-rest 17323  df-topgen 17344  df-fbas 21286  df-fg 21287  df-top 22807  df-topon 22824  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-cn 23140  df-cnp 23141  df-haus 23228  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-cnext 23973
This theorem is referenced by:  rrhre  34029
  Copyright terms: Public domain W3C validator