| Step | Hyp | Ref
| Expression |
| 1 | | cnextf.1 |
. . . . 5
⊢ 𝐶 = ∪
𝐽 |
| 2 | | cnextf.2 |
. . . . 5
⊢ 𝐵 = ∪
𝐾 |
| 3 | | cnextf.3 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Top) |
| 4 | | cnextf.4 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Haus) |
| 5 | | cnextf.5 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 6 | | cnextf.a |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| 7 | | cnextf.6 |
. . . . 5
⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶) |
| 8 | | cnextf.7 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | cnextf 24009 |
. . . 4
⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶⟶𝐵) |
| 10 | 9 | ffnd 6712 |
. . 3
⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶) |
| 11 | | fnssres 6666 |
. . 3
⊢ ((((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ∧ 𝐴 ⊆ 𝐶) → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴) |
| 12 | 10, 6, 11 | syl2anc 584 |
. 2
⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴) |
| 13 | 5 | ffnd 6712 |
. 2
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 14 | | fvres 6900 |
. . . 4
⊢ (𝑦 ∈ 𝐴 → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦)) |
| 15 | 14 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦)) |
| 16 | 6 | sselda 3963 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐶) |
| 17 | 1, 2, 3, 4, 5, 6, 7, 8 | cnextfvval 24008 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹)) |
| 18 | 16, 17 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹)) |
| 19 | 5 | ffvelcdmda 7079 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐵) |
| 20 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
| 21 | 1 | restuni 23105 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 22 | 3, 6, 21 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 24 | 20, 23 | eleqtrd 2837 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ∪ (𝐽 ↾t 𝐴)) |
| 25 | | cnextfres1.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| 26 | | fvex 6894 |
. . . . . . . . . . . . . . . . 17
⊢
((cls‘𝐽)‘𝐴) ∈ V |
| 27 | 7, 26 | eqeltrrdi 2844 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐶 ∈ V) |
| 28 | 27, 6 | ssexd 5299 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ V) |
| 29 | | resttop 23103 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) ∈ Top) |
| 30 | 3, 28, 29 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Top) |
| 31 | | haustop 23274 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ Haus → 𝐾 ∈ Top) |
| 32 | 4, 31 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ Top) |
| 33 | 22 | feq2d 6697 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵)) |
| 34 | 5, 33 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵) |
| 35 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢ ∪ (𝐽
↾t 𝐴) =
∪ (𝐽 ↾t 𝐴) |
| 36 | 35, 2 | cnnei 23225 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ↾t 𝐴) ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:∪
(𝐽 ↾t
𝐴)⟶𝐵) → (𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ∀𝑦 ∈ ∪ (𝐽 ↾t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤)) |
| 37 | 30, 32, 34, 36 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ∀𝑦 ∈ ∪ (𝐽 ↾t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤)) |
| 38 | 25, 37 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑦 ∈ ∪ (𝐽 ↾t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤) |
| 39 | 38 | r19.21bi 3238 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ (𝐽 ↾t 𝐴)) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤) |
| 40 | 24, 39 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤) |
| 41 | 40 | r19.21bi 3238 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})) → ∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤) |
| 42 | | snssi 4789 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → {𝑦} ⊆ 𝐴) |
| 43 | 1 | neitr 23123 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶 ∧ {𝑦} ⊆ 𝐴) → ((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)) |
| 44 | 3, 6, 42, 43 | syl2an3an 1424 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)) |
| 45 | 44 | rexeqdv 3310 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹 “ 𝑣) ⊆ 𝑤)) |
| 46 | 45 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})) → (∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹 “ 𝑣) ⊆ 𝑤)) |
| 47 | 41, 46 | mpbid 232 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹 “ 𝑣) ⊆ 𝑤) |
| 48 | 47 | ralrimiva 3133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹 “ 𝑣) ⊆ 𝑤) |
| 49 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐾 ∈ Haus) |
| 50 | 2 | toptopon 22860 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵)) |
| 51 | 50 | biimpi 216 |
. . . . . . . . 9
⊢ (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝐵)) |
| 52 | 49, 31, 51 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐾 ∈ (TopOn‘𝐵)) |
| 53 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((cls‘𝐽)‘𝐴) = 𝐶) |
| 54 | 16, 53 | eleqtrrd 2838 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ((cls‘𝐽)‘𝐴)) |
| 55 | 1 | toptopon 22860 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶)) |
| 56 | 3, 55 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐶)) |
| 57 | 56 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝐶)) |
| 58 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐴 ⊆ 𝐶) |
| 59 | | trnei 23835 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
| 60 | 57, 58, 16, 59 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
| 61 | 54, 60 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴)) |
| 62 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐹:𝐴⟶𝐵) |
| 63 | | flfnei 23934 |
. . . . . . . 8
⊢ ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴⟶𝐵) → ((𝐹‘𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹‘𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹 “ 𝑣) ⊆ 𝑤))) |
| 64 | 52, 61, 62, 63 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹‘𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹 “ 𝑣) ⊆ 𝑤))) |
| 65 | 19, 48, 64 | mpbir2and 713 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹)) |
| 66 | | eleq1w 2818 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐶 ↔ 𝑦 ∈ 𝐶)) |
| 67 | 66 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐶) ↔ (𝜑 ∧ 𝑦 ∈ 𝐶))) |
| 68 | | sneq 4616 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
| 69 | 68 | fveq2d 6885 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑦})) |
| 70 | 69 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)) |
| 71 | 70 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))) |
| 72 | 71 | fveq1d 6883 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹)) |
| 73 | 72 | neeq1d 2992 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)) |
| 74 | 67, 73 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅))) |
| 75 | 74, 8 | chvarvv 1989 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅) |
| 76 | 16, 75 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅) |
| 77 | 2 | hausflf2 23941 |
. . . . . . 7
⊢ (((𝐾 ∈ Haus ∧
(((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴⟶𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o) |
| 78 | 49, 61, 62, 76, 77 | syl31anc 1375 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o) |
| 79 | | en1eqsn 9285 |
. . . . . 6
⊢ (((𝐹‘𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹‘𝑦)}) |
| 80 | 65, 78, 79 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹‘𝑦)}) |
| 81 | 80 | unieqd 4901 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∪
((𝐾 fLimf
(((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = ∪ {(𝐹‘𝑦)}) |
| 82 | | fvex 6894 |
. . . . 5
⊢ (𝐹‘𝑦) ∈ V |
| 83 | 82 | unisn 4907 |
. . . 4
⊢ ∪ {(𝐹‘𝑦)} = (𝐹‘𝑦) |
| 84 | 81, 83 | eqtrdi 2787 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∪
((𝐾 fLimf
(((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = (𝐹‘𝑦)) |
| 85 | 15, 18, 84 | 3eqtrd 2775 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (𝐹‘𝑦)) |
| 86 | 12, 13, 85 | eqfnfvd 7029 |
1
⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹) |