Step | Hyp | Ref
| Expression |
1 | | cnextf.1 |
. . . . 5
⊢ 𝐶 = ∪
𝐽 |
2 | | cnextf.2 |
. . . . 5
⊢ 𝐵 = ∪
𝐾 |
3 | | cnextf.3 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Top) |
4 | | cnextf.4 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Haus) |
5 | | cnextf.5 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
6 | | cnextf.a |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
7 | | cnextf.6 |
. . . . 5
⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶) |
8 | | cnextf.7 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | cnextf 23217 |
. . . 4
⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶⟶𝐵) |
10 | 9 | ffnd 6601 |
. . 3
⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶) |
11 | | fnssres 6555 |
. . 3
⊢ ((((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ∧ 𝐴 ⊆ 𝐶) → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴) |
12 | 10, 6, 11 | syl2anc 584 |
. 2
⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) Fn 𝐴) |
13 | 5 | ffnd 6601 |
. 2
⊢ (𝜑 → 𝐹 Fn 𝐴) |
14 | | fvres 6793 |
. . . 4
⊢ (𝑦 ∈ 𝐴 → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦)) |
15 | 14 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (((𝐽CnExt𝐾)‘𝐹)‘𝑦)) |
16 | 6 | sselda 3921 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐶) |
17 | 1, 2, 3, 4, 5, 6, 7, 8 | cnextfvval 23216 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹)) |
18 | 16, 17 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((𝐽CnExt𝐾)‘𝐹)‘𝑦) = ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹)) |
19 | 5 | ffvelrnda 6961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐵) |
20 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
21 | 1 | restuni 22313 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
22 | 3, 6, 21 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
23 | 22 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
24 | 20, 23 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ∪ (𝐽 ↾t 𝐴)) |
25 | | cnextfres1.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
26 | | fvex 6787 |
. . . . . . . . . . . . . . . . 17
⊢
((cls‘𝐽)‘𝐴) ∈ V |
27 | 7, 26 | eqeltrrdi 2848 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐶 ∈ V) |
28 | 27, 6 | ssexd 5248 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ V) |
29 | | resttop 22311 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) ∈ Top) |
30 | 3, 28, 29 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Top) |
31 | | haustop 22482 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ Haus → 𝐾 ∈ Top) |
32 | 4, 31 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ Top) |
33 | 22 | feq2d 6586 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵)) |
34 | 5, 33 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t 𝐴)⟶𝐵) |
35 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ ∪ (𝐽
↾t 𝐴) =
∪ (𝐽 ↾t 𝐴) |
36 | 35, 2 | cnnei 22433 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ↾t 𝐴) ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:∪
(𝐽 ↾t
𝐴)⟶𝐵) → (𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ∀𝑦 ∈ ∪ (𝐽 ↾t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤)) |
37 | 30, 32, 34, 36 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ∀𝑦 ∈ ∪ (𝐽 ↾t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤)) |
38 | 25, 37 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑦 ∈ ∪ (𝐽 ↾t 𝐴)∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤) |
39 | 38 | r19.21bi 3134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ (𝐽 ↾t 𝐴)) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤) |
40 | 24, 39 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤) |
41 | 40 | r19.21bi 3134 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})) → ∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤) |
42 | | snssi 4741 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → {𝑦} ⊆ 𝐴) |
43 | 1 | neitr 22331 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶 ∧ {𝑦} ⊆ 𝐴) → ((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)) |
44 | 3, 6, 42, 43 | syl2an3an 1421 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((nei‘(𝐽 ↾t 𝐴))‘{𝑦}) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)) |
45 | 44 | rexeqdv 3349 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹 “ 𝑣) ⊆ 𝑤)) |
46 | 45 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})) → (∃𝑣 ∈ ((nei‘(𝐽 ↾t 𝐴))‘{𝑦})(𝐹 “ 𝑣) ⊆ 𝑤 ↔ ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹 “ 𝑣) ⊆ 𝑤)) |
47 | 41, 46 | mpbid 231 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹 “ 𝑣) ⊆ 𝑤) |
48 | 47 | ralrimiva 3103 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹 “ 𝑣) ⊆ 𝑤) |
49 | 4 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐾 ∈ Haus) |
50 | 2 | toptopon 22066 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵)) |
51 | 50 | biimpi 215 |
. . . . . . . . 9
⊢ (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝐵)) |
52 | 49, 31, 51 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐾 ∈ (TopOn‘𝐵)) |
53 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((cls‘𝐽)‘𝐴) = 𝐶) |
54 | 16, 53 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ((cls‘𝐽)‘𝐴)) |
55 | 1 | toptopon 22066 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶)) |
56 | 3, 55 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐶)) |
57 | 56 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝐶)) |
58 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐴 ⊆ 𝐶) |
59 | | trnei 23043 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
60 | 57, 58, 16, 59 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
61 | 54, 60 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴)) |
62 | 5 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐹:𝐴⟶𝐵) |
63 | | flfnei 23142 |
. . . . . . . 8
⊢ ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴⟶𝐵) → ((𝐹‘𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹‘𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹 “ 𝑣) ⊆ 𝑤))) |
64 | 52, 61, 62, 63 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ↔ ((𝐹‘𝑦) ∈ 𝐵 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑦)})∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)(𝐹 “ 𝑣) ⊆ 𝑤))) |
65 | 19, 48, 64 | mpbir2and 710 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹)) |
66 | | eleq1w 2821 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐶 ↔ 𝑦 ∈ 𝐶)) |
67 | 66 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐶) ↔ (𝜑 ∧ 𝑦 ∈ 𝐶))) |
68 | | sneq 4571 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
69 | 68 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑦})) |
70 | 69 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)) |
71 | 70 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))) |
72 | 71 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹)) |
73 | 72 | neeq1d 3003 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)) |
74 | 67, 73 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅))) |
75 | 74, 8 | chvarvv 2002 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅) |
76 | 16, 75 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅) |
77 | 2 | hausflf2 23149 |
. . . . . . 7
⊢ (((𝐾 ∈ Haus ∧
(((nei‘𝐽)‘{𝑦}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴⟶𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o) |
78 | 49, 61, 62, 76, 77 | syl31anc 1372 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o) |
79 | | en1eqsn 9048 |
. . . . . 6
⊢ (((𝐹‘𝑦) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≈ 1o) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹‘𝑦)}) |
80 | 65, 78, 79 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = {(𝐹‘𝑦)}) |
81 | 80 | unieqd 4853 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∪
((𝐾 fLimf
(((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = ∪ {(𝐹‘𝑦)}) |
82 | | fvex 6787 |
. . . . 5
⊢ (𝐹‘𝑦) ∈ V |
83 | 82 | unisn 4861 |
. . . 4
⊢ ∪ {(𝐹‘𝑦)} = (𝐹‘𝑦) |
84 | 81, 83 | eqtrdi 2794 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∪
((𝐾 fLimf
(((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) = (𝐹‘𝑦)) |
85 | 15, 18, 84 | 3eqtrd 2782 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴)‘𝑦) = (𝐹‘𝑦)) |
86 | 12, 13, 85 | eqfnfvd 6912 |
1
⊢ (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ↾ 𝐴) = 𝐹) |