MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwpwdom Structured version   Visualization version   GIF version

Theorem hauspwpwdom 23882
Description: If 𝑋 is a Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by the double powerset of 𝐴. In particular, a Hausdorff space with a dense subset 𝐴 has cardinality at most 𝒫 𝒫 𝐴, and a separable Hausdorff space has cardinality at most 𝒫 𝒫 ℕ. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 28-Jul-2015.)
Hypothesis
Ref Expression
hauspwpwf1.x 𝑋 = 𝐽
Assertion
Ref Expression
hauspwpwdom ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴)

Proof of Theorem hauspwpwdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6876 . 2 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ∈ V)
2 haustop 23225 . . . . . 6 (𝐽 ∈ Haus → 𝐽 ∈ Top)
3 hauspwpwf1.x . . . . . . 7 𝑋 = 𝐽
43topopn 22800 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
52, 4syl 17 . . . . 5 (𝐽 ∈ Haus → 𝑋𝐽)
65adantr 480 . . . 4 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝑋𝐽)
7 simpr 484 . . . 4 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝐴𝑋)
86, 7ssexd 5282 . . 3 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝐴 ∈ V)
9 pwexg 5336 . . 3 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
10 pwexg 5336 . . 3 (𝒫 𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V)
118, 9, 103syl 18 . 2 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝒫 𝒫 𝐴 ∈ V)
12 eqid 2730 . . 3 (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))}) = (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))})
133, 12hauspwpwf1 23881 . 2 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴)
14 f1dom2g 8944 . 2 ((((cls‘𝐽)‘𝐴) ∈ V ∧ 𝒫 𝒫 𝐴 ∈ V ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴)
151, 11, 13, 14syl3anc 1373 1 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874   class class class wbr 5110  cmpt 5191  1-1wf1 6511  cfv 6514  cdom 8919  Topctop 22787  clsccl 22912  Hauscha 23202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-dom 8923  df-top 22788  df-cld 22913  df-ntr 22914  df-cls 22915  df-haus 23209
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator