| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hauspwpwdom | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is a Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by the double powerset of 𝐴. In particular, a Hausdorff space with a dense subset 𝐴 has cardinality at most 𝒫 𝒫 𝐴, and a separable Hausdorff space has cardinality at most 𝒫 𝒫 ℕ. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| hauspwpwf1.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| hauspwpwdom | ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6837 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ∈ V) | |
| 2 | haustop 23246 | . . . . . 6 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) | |
| 3 | hauspwpwf1.x | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 3 | topopn 22821 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ Haus → 𝑋 ∈ 𝐽) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 8 | 6, 7 | ssexd 5260 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 9 | pwexg 5314 | . . 3 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 10 | pwexg 5314 | . . 3 ⊢ (𝒫 𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V) | |
| 11 | 8, 9, 10 | 3syl 18 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝒫 𝒫 𝐴 ∈ V) |
| 12 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑧 = (𝑦 ∩ 𝐴))}) = (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑧 = (𝑦 ∩ 𝐴))}) | |
| 13 | 3, 12 | hauspwpwf1 23902 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑧 = (𝑦 ∩ 𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) |
| 14 | f1dom2g 8892 | . 2 ⊢ ((((cls‘𝐽)‘𝐴) ∈ V ∧ 𝒫 𝒫 𝐴 ∈ V ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑧 = (𝑦 ∩ 𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴) | |
| 15 | 1, 11, 13, 14 | syl3anc 1373 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 class class class wbr 5089 ↦ cmpt 5170 –1-1→wf1 6478 ‘cfv 6481 ≼ cdom 8867 Topctop 22808 clsccl 22933 Hauscha 23223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-dom 8871 df-top 22809 df-cld 22934 df-ntr 22935 df-cls 22936 df-haus 23230 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |