MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwpwdom Structured version   Visualization version   GIF version

Theorem hauspwpwdom 23875
Description: If 𝑋 is a Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by the double powerset of 𝐴. In particular, a Hausdorff space with a dense subset 𝐴 has cardinality at most 𝒫 𝒫 𝐴, and a separable Hausdorff space has cardinality at most 𝒫 𝒫 ℕ. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 28-Jul-2015.)
Hypothesis
Ref Expression
hauspwpwf1.x 𝑋 = 𝐽
Assertion
Ref Expression
hauspwpwdom ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴)

Proof of Theorem hauspwpwdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6873 . 2 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ∈ V)
2 haustop 23218 . . . . . 6 (𝐽 ∈ Haus → 𝐽 ∈ Top)
3 hauspwpwf1.x . . . . . . 7 𝑋 = 𝐽
43topopn 22793 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
52, 4syl 17 . . . . 5 (𝐽 ∈ Haus → 𝑋𝐽)
65adantr 480 . . . 4 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝑋𝐽)
7 simpr 484 . . . 4 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝐴𝑋)
86, 7ssexd 5279 . . 3 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝐴 ∈ V)
9 pwexg 5333 . . 3 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
10 pwexg 5333 . . 3 (𝒫 𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V)
118, 9, 103syl 18 . 2 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝒫 𝒫 𝐴 ∈ V)
12 eqid 2729 . . 3 (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))}) = (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))})
133, 12hauspwpwf1 23874 . 2 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴)
14 f1dom2g 8941 . 2 ((((cls‘𝐽)‘𝐴) ∈ V ∧ 𝒫 𝒫 𝐴 ∈ V ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴)
151, 11, 13, 14syl3anc 1373 1 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447  cin 3913  wss 3914  𝒫 cpw 4563   cuni 4871   class class class wbr 5107  cmpt 5188  1-1wf1 6508  cfv 6511  cdom 8916  Topctop 22780  clsccl 22905  Hauscha 23195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-dom 8920  df-top 22781  df-cld 22906  df-ntr 22907  df-cls 22908  df-haus 23202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator