Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hauspwpwdom | Structured version Visualization version GIF version |
Description: If 𝑋 is a Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by the double powerset of 𝐴. In particular, a Hausdorff space with a dense subset 𝐴 has cardinality at most 𝒫 𝒫 𝐴, and a separable Hausdorff space has cardinality at most 𝒫 𝒫 ℕ. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
hauspwpwf1.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hauspwpwdom | ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6789 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ∈ V) | |
2 | haustop 22482 | . . . . . 6 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) | |
3 | hauspwpwf1.x | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | topopn 22055 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ Haus → 𝑋 ∈ 𝐽) |
6 | 5 | adantr 481 | . . . 4 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
7 | simpr 485 | . . . 4 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
8 | 6, 7 | ssexd 5248 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
9 | pwexg 5301 | . . 3 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
10 | pwexg 5301 | . . 3 ⊢ (𝒫 𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V) | |
11 | 8, 9, 10 | 3syl 18 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝒫 𝒫 𝐴 ∈ V) |
12 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑧 = (𝑦 ∩ 𝐴))}) = (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑧 = (𝑦 ∩ 𝐴))}) | |
13 | 3, 12 | hauspwpwf1 23138 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑧 = (𝑦 ∩ 𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) |
14 | f1dom2g 8757 | . 2 ⊢ ((((cls‘𝐽)‘𝐴) ∈ V ∧ 𝒫 𝒫 𝐴 ∈ V ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑧 = (𝑦 ∩ 𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴) | |
15 | 1, 11, 13, 14 | syl3anc 1370 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 class class class wbr 5074 ↦ cmpt 5157 –1-1→wf1 6430 ‘cfv 6433 ≼ cdom 8731 Topctop 22042 clsccl 22169 Hauscha 22459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-dom 8735 df-top 22043 df-cld 22170 df-ntr 22171 df-cls 22172 df-haus 22466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |