MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwpwdom Structured version   Visualization version   GIF version

Theorem hauspwpwdom 23873
Description: If 𝑋 is a Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by the double powerset of 𝐴. In particular, a Hausdorff space with a dense subset 𝐴 has cardinality at most 𝒫 𝒫 𝐴, and a separable Hausdorff space has cardinality at most 𝒫 𝒫 ℕ. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 28-Jul-2015.)
Hypothesis
Ref Expression
hauspwpwf1.x 𝑋 = 𝐽
Assertion
Ref Expression
hauspwpwdom ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴)

Proof of Theorem hauspwpwdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6837 . 2 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ∈ V)
2 haustop 23216 . . . . . 6 (𝐽 ∈ Haus → 𝐽 ∈ Top)
3 hauspwpwf1.x . . . . . . 7 𝑋 = 𝐽
43topopn 22791 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
52, 4syl 17 . . . . 5 (𝐽 ∈ Haus → 𝑋𝐽)
65adantr 480 . . . 4 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝑋𝐽)
7 simpr 484 . . . 4 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝐴𝑋)
86, 7ssexd 5263 . . 3 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝐴 ∈ V)
9 pwexg 5317 . . 3 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
10 pwexg 5317 . . 3 (𝒫 𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V)
118, 9, 103syl 18 . 2 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝒫 𝒫 𝐴 ∈ V)
12 eqid 2729 . . 3 (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))}) = (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))})
133, 12hauspwpwf1 23872 . 2 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴)
14 f1dom2g 8895 . 2 ((((cls‘𝐽)‘𝐴) ∈ V ∧ 𝒫 𝒫 𝐴 ∈ V ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦𝐽 (𝑥𝑦𝑧 = (𝑦𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴)
151, 11, 13, 14syl3anc 1373 1 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3436  cin 3902  wss 3903  𝒫 cpw 4551   cuni 4858   class class class wbr 5092  cmpt 5173  1-1wf1 6479  cfv 6482  cdom 8870  Topctop 22778  clsccl 22903  Hauscha 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-dom 8874  df-top 22779  df-cld 22904  df-ntr 22905  df-cls 22906  df-haus 23200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator