![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hauspwpwdom | Structured version Visualization version GIF version |
Description: If 𝑋 is a Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by the double powerset of 𝐴. In particular, a Hausdorff space with a dense subset 𝐴 has cardinality at most 𝒫 𝒫 𝐴, and a separable Hausdorff space has cardinality at most 𝒫 𝒫 ℕ. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
hauspwpwf1.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hauspwpwdom | ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6916 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ∈ V) | |
2 | haustop 23326 | . . . . . 6 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) | |
3 | hauspwpwf1.x | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | topopn 22899 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ Haus → 𝑋 ∈ 𝐽) |
6 | 5 | adantr 479 | . . . 4 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
7 | simpr 483 | . . . 4 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
8 | 6, 7 | ssexd 5329 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
9 | pwexg 5382 | . . 3 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
10 | pwexg 5382 | . . 3 ⊢ (𝒫 𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V) | |
11 | 8, 9, 10 | 3syl 18 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝒫 𝒫 𝐴 ∈ V) |
12 | eqid 2726 | . . 3 ⊢ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑧 = (𝑦 ∩ 𝐴))}) = (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑧 = (𝑦 ∩ 𝐴))}) | |
13 | 3, 12 | hauspwpwf1 23982 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑧 = (𝑦 ∩ 𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) |
14 | f1dom2g 9000 | . 2 ⊢ ((((cls‘𝐽)‘𝐴) ∈ V ∧ 𝒫 𝒫 𝐴 ∈ V ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑧 ∣ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑧 = (𝑦 ∩ 𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴) | |
15 | 1, 11, 13, 14 | syl3anc 1368 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 ∃wrex 3060 Vcvv 3462 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4607 ∪ cuni 4913 class class class wbr 5153 ↦ cmpt 5236 –1-1→wf1 6551 ‘cfv 6554 ≼ cdom 8972 Topctop 22886 clsccl 23013 Hauscha 23303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-dom 8976 df-top 22887 df-cld 23014 df-ntr 23015 df-cls 23016 df-haus 23310 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |