MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resthaus Structured version   Visualization version   GIF version

Theorem resthaus 23271
Description: A subspace of a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
resthaus ((𝐽 ∈ Haus ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Haus)

Proof of Theorem resthaus
StepHypRef Expression
1 haustop 23234 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Top)
2 cnhaus 23257 . 2 ((𝐽 ∈ Haus ∧ ( I ↾ (𝐴 𝐽)):(𝐴 𝐽)–1-1→(𝐴 𝐽) ∧ ( I ↾ (𝐴 𝐽)) ∈ ((𝐽t 𝐴) Cn 𝐽)) → (𝐽t 𝐴) ∈ Haus)
31, 2resthauslem 23266 1 ((𝐽 ∈ Haus ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  cin 3946   cuni 4908   I cid 5575  cres 5680  (class class class)co 7420  t crest 17401  Hauscha 23211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-map 8846  df-en 8964  df-fin 8967  df-fi 9434  df-rest 17403  df-topgen 17424  df-top 22795  df-topon 22812  df-bases 22848  df-cn 23130  df-haus 23218
This theorem is referenced by:  hauslly  23395  hausnlly  23396  xrge0tsms  24749  cncfcnvcn  24845  xrge0tsmsd  32771  xrge0haus  33545  esumpfinval  33694  esumpfinvalf  33695
  Copyright terms: Public domain W3C validator