![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resthaus | Structured version Visualization version GIF version |
Description: A subspace of a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
resthaus | ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Haus) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haustop 23234 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) | |
2 | cnhaus 23257 | . 2 ⊢ ((𝐽 ∈ Haus ∧ ( I ↾ (𝐴 ∩ ∪ 𝐽)):(𝐴 ∩ ∪ 𝐽)–1-1→(𝐴 ∩ ∪ 𝐽) ∧ ( I ↾ (𝐴 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝐴) Cn 𝐽)) → (𝐽 ↾t 𝐴) ∈ Haus) | |
3 | 1, 2 | resthauslem 23266 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Haus) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∩ cin 3946 ∪ cuni 4908 I cid 5575 ↾ cres 5680 (class class class)co 7420 ↾t crest 17401 Hauscha 23211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-map 8846 df-en 8964 df-fin 8967 df-fi 9434 df-rest 17403 df-topgen 17424 df-top 22795 df-topon 22812 df-bases 22848 df-cn 23130 df-haus 23218 |
This theorem is referenced by: hauslly 23395 hausnlly 23396 xrge0tsms 24749 cncfcnvcn 24845 xrge0tsmsd 32771 xrge0haus 33545 esumpfinval 33694 esumpfinvalf 33695 |
Copyright terms: Public domain | W3C validator |