Proof of Theorem normpar
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fvoveq1 7455 | . . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 −ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))) | 
| 2 | 1 | oveq1d 7447 | . . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 −ℎ 𝐵))↑2) =
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2)) | 
| 3 |  | fvoveq1 7455 | . . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 +ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))) | 
| 4 | 3 | oveq1d 7447 | . . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 +ℎ 𝐵))↑2) =
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2)) | 
| 5 | 2, 4 | oveq12d 7450 | . . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(((normℎ‘(𝐴 −ℎ 𝐵))↑2) +
((normℎ‘(𝐴 +ℎ 𝐵))↑2)) =
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2))) | 
| 6 |  | fveq2 6905 | . . . . . 6
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘𝐴) = (normℎ‘if(𝐴 ∈ ℋ, 𝐴,
0ℎ))) | 
| 7 | 6 | oveq1d 7447 | . . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘𝐴)↑2) =
((normℎ‘if(𝐴 ∈ ℋ, 𝐴,
0ℎ))↑2)) | 
| 8 | 7 | oveq2d 7448 | . . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (2 ·
((normℎ‘𝐴)↑2)) = (2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴,
0ℎ))↑2))) | 
| 9 | 8 | oveq1d 7447 | . . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((2 ·
((normℎ‘𝐴)↑2)) + (2 ·
((normℎ‘𝐵)↑2))) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘𝐵)↑2)))) | 
| 10 | 5, 9 | eqeq12d 2752 | . 2
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((((normℎ‘(𝐴 −ℎ 𝐵))↑2) +
((normℎ‘(𝐴 +ℎ 𝐵))↑2)) = ((2 ·
((normℎ‘𝐴)↑2)) + (2 ·
((normℎ‘𝐵)↑2))) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2)) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘𝐵)↑2))))) | 
| 11 |  | oveq2 7440 | . . . . . 6
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | 
| 12 | 11 | fveq2d 6909 | . . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) | 
| 13 | 12 | oveq1d 7447 | . . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) =
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2)) | 
| 14 |  | oveq2 7440 | . . . . . 6
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
+ℎ 𝐵) =
(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
+ℎ if(𝐵
∈ ℋ, 𝐵,
0ℎ))) | 
| 15 | 14 | fveq2d 6909 | . . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))) | 
| 16 | 15 | oveq1d 7447 | . . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2) =
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2)) | 
| 17 | 13, 16 | oveq12d 7450 | . . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2)) =
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2))) | 
| 18 |  | fveq2 6905 | . . . . . 6
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘𝐵) = (normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))) | 
| 19 | 18 | oveq1d 7447 | . . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘𝐵)↑2) =
((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2)) | 
| 20 | 19 | oveq2d 7448 | . . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (2 ·
((normℎ‘𝐵)↑2)) = (2 ·
((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2))) | 
| 21 | 20 | oveq2d 7448 | . . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘𝐵)↑2))) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2)))) | 
| 22 | 17, 21 | eqeq12d 2752 | . 2
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2)) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘𝐵)↑2))) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2)) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2))))) | 
| 23 |  | ifhvhv0 31042 | . . 3
⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈
ℋ | 
| 24 |  | ifhvhv0 31042 | . . 3
⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈
ℋ | 
| 25 | 23, 24 | normpari 31174 | . 2
⊢
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2)) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2))) | 
| 26 | 10, 22, 25 | dedth2h 4584 | 1
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) →
(((normℎ‘(𝐴 −ℎ 𝐵))↑2) +
((normℎ‘(𝐴 +ℎ 𝐵))↑2)) = ((2 ·
((normℎ‘𝐴)↑2)) + (2 ·
((normℎ‘𝐵)↑2)))) |