HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigre Structured version   Visualization version   GIF version

Theorem eigre 29245
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigre (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))

Proof of Theorem eigre
StepHypRef Expression
1 fveq2 6437 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇𝐴) = (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)))
2 oveq2 6918 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐵 · 𝐴) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)))
31, 2eqeq12d 2840 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) = (𝐵 · 𝐴) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0))))
4 neeq1 3061 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ≠ 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0))
53, 4anbi12d 624 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0)))
6 id 22 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → 𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0))
76, 1oveq12d 6928 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih (𝑇𝐴)) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))))
81, 6oveq12d 6928 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) ·ih 𝐴) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)))
97, 8eqeq12d 2840 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0))))
109bibi1d 335 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ)))
115, 10imbi12d 336 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ))))
12 oveq1 6917 . . . . . 6 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)))
1312eqeq2d 2835 . . . . 5 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0))))
1413anbi1d 623 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0)))
15 eleq1 2894 . . . . 5 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵 ∈ ℝ ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))
1615bibi2d 334 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ)))
1714, 16imbi12d 336 . . 3 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))))
18 ifhvhv0 28430 . . . 4 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
19 0cn 10355 . . . . 5 0 ∈ ℂ
2019elimel 4375 . . . 4 if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ
2118, 20eigrei 29244 . . 3 (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))
2211, 17, 21dedth2h 4365 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)))
2322imp 397 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wne 2999  ifcif 4308  cfv 6127  (class class class)co 6910  cc 10257  cr 10258  0cc0 10259  chba 28327   · csm 28329   ·ih csp 28330  0c0v 28332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-hv0cl 28411  ax-hfvmul 28413  ax-hfi 28487  ax-his1 28490  ax-his3 28492  ax-his4 28493
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-po 5265  df-so 5266  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-2 11421  df-cj 14223  df-re 14224  df-im 14225
This theorem is referenced by:  eighmre  29373
  Copyright terms: Public domain W3C validator