HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigre Structured version   Visualization version   GIF version

Theorem eigre 31854
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigre (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))

Proof of Theorem eigre
StepHypRef Expression
1 fveq2 6906 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇𝐴) = (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)))
2 oveq2 7439 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐵 · 𝐴) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)))
31, 2eqeq12d 2753 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) = (𝐵 · 𝐴) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0))))
4 neeq1 3003 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ≠ 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0))
53, 4anbi12d 632 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0)))
6 id 22 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → 𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0))
76, 1oveq12d 7449 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih (𝑇𝐴)) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))))
81, 6oveq12d 7449 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) ·ih 𝐴) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)))
97, 8eqeq12d 2753 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0))))
109bibi1d 343 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ)))
115, 10imbi12d 344 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ))))
12 oveq1 7438 . . . . . 6 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)))
1312eqeq2d 2748 . . . . 5 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0))))
1413anbi1d 631 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0)))
15 eleq1 2829 . . . . 5 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵 ∈ ℝ ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))
1615bibi2d 342 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ)))
1714, 16imbi12d 344 . . 3 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))))
18 ifhvhv0 31041 . . . 4 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
19 0cn 11253 . . . . 5 0 ∈ ℂ
2019elimel 4595 . . . 4 if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ
2118, 20eigrei 31853 . . 3 (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))
2211, 17, 21dedth2h 4585 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)))
2322imp 406 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  ifcif 4525  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  chba 30938   · csm 30940   ·ih csp 30941  0c0v 30943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-hv0cl 31022  ax-hfvmul 31024  ax-hfi 31098  ax-his1 31101  ax-his3 31103  ax-his4 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-cj 15138  df-re 15139  df-im 15140
This theorem is referenced by:  eighmre  31982
  Copyright terms: Public domain W3C validator