HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigre Structured version   Visualization version   GIF version

Theorem eigre 31816
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigre (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))

Proof of Theorem eigre
StepHypRef Expression
1 fveq2 6876 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇𝐴) = (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)))
2 oveq2 7413 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐵 · 𝐴) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)))
31, 2eqeq12d 2751 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) = (𝐵 · 𝐴) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0))))
4 neeq1 2994 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ≠ 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0))
53, 4anbi12d 632 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0)))
6 id 22 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → 𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0))
76, 1oveq12d 7423 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih (𝑇𝐴)) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))))
81, 6oveq12d 7423 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) ·ih 𝐴) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)))
97, 8eqeq12d 2751 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0))))
109bibi1d 343 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ)))
115, 10imbi12d 344 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ))))
12 oveq1 7412 . . . . . 6 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)))
1312eqeq2d 2746 . . . . 5 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0))))
1413anbi1d 631 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0)))
15 eleq1 2822 . . . . 5 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵 ∈ ℝ ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))
1615bibi2d 342 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ)))
1714, 16imbi12d 344 . . 3 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))))
18 ifhvhv0 31003 . . . 4 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
19 0cn 11227 . . . . 5 0 ∈ ℂ
2019elimel 4570 . . . 4 if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ
2118, 20eigrei 31815 . . 3 (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))
2211, 17, 21dedth2h 4560 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)))
2322imp 406 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  ifcif 4500  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  chba 30900   · csm 30902   ·ih csp 30903  0c0v 30905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-hv0cl 30984  ax-hfvmul 30986  ax-hfi 31060  ax-his1 31063  ax-his3 31065  ax-his4 31066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-cj 15118  df-re 15119  df-im 15120
This theorem is referenced by:  eighmre  31944
  Copyright terms: Public domain W3C validator