|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > normsub | Structured version Visualization version GIF version | ||
| Description: Swapping order of subtraction doesn't change the norm of a vector. (Contributed by NM, 14-Aug-1999.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| normsub | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(𝐵 −ℎ 𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fvoveq1 7454 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵))) | |
| 2 | oveq2 7439 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐵 −ℎ 𝐴) = (𝐵 −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) | |
| 3 | 2 | fveq2d 6910 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐵 −ℎ 𝐴)) = (normℎ‘(𝐵 −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ)))) | 
| 4 | 1, 3 | eqeq12d 2753 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(𝐵 −ℎ 𝐴)) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = (normℎ‘(𝐵 −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ))))) | 
| 5 | oveq2 7439 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
| 6 | 5 | fveq2d 6910 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) | 
| 7 | fvoveq1 7454 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(𝐵 −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) = (normℎ‘(if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ)))) | |
| 8 | 6, 7 | eqeq12d 2753 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = (normℎ‘(𝐵 −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = (normℎ‘(if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ))))) | 
| 9 | ifhvhv0 31041 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
| 10 | ifhvhv0 31041 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
| 11 | 9, 10 | normsubi 31160 | . 2 ⊢ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = (normℎ‘(if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) | 
| 12 | 4, 8, 11 | dedth2h 4585 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(𝐵 −ℎ 𝐴))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ifcif 4525 ‘cfv 6561 (class class class)co 7431 ℋchba 30938 normℎcno 30942 0ℎc0v 30943 −ℎ cmv 30944 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-hfvadd 31019 ax-hvcom 31020 ax-hv0cl 31022 ax-hfvmul 31024 ax-hvmulid 31025 ax-hvmulass 31026 ax-hvdistr1 31027 ax-hvmul0 31029 ax-hfi 31098 ax-his1 31101 ax-his3 31103 ax-his4 31104 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-hnorm 30987 df-hvsub 30990 | 
| This theorem is referenced by: normneg 31163 norm3dif2 31170 hhcno 31923 hhcnf 31924 | 
| Copyright terms: Public domain | W3C validator |