![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > norm-ii | Structured version Visualization version GIF version |
Description: Triangle inequality for norms. Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm-ii | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 +ℎ 𝐵)) ≤ ((normℎ‘𝐴) + (normℎ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7434 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 +ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵))) | |
2 | fveq2 6890 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘𝐴) = (normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) | |
3 | 2 | oveq1d 7426 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((normℎ‘𝐴) + (normℎ‘𝐵)) = ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘𝐵))) |
4 | 1, 3 | breq12d 5160 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((normℎ‘(𝐴 +ℎ 𝐵)) ≤ ((normℎ‘𝐴) + (normℎ‘𝐵)) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵)) ≤ ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘𝐵)))) |
5 | oveq2 7419 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | fveq2d 6894 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
7 | fveq2 6890 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘𝐵) = (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
8 | 7 | oveq2d 7427 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘𝐵)) = ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
9 | 6, 8 | breq12d 5160 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵)) ≤ ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘𝐵)) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
10 | ifhvhv0 30542 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
11 | ifhvhv0 30542 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
12 | 10, 11 | norm-ii-i 30657 | . 2 ⊢ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
13 | 4, 9, 12 | dedth2h 4586 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 +ℎ 𝐵)) ≤ ((normℎ‘𝐴) + (normℎ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ifcif 4527 class class class wbr 5147 ‘cfv 6542 (class class class)co 7411 + caddc 11115 ≤ cle 11253 ℋchba 30439 +ℎ cva 30440 normℎcno 30443 0ℎc0v 30444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-hfvadd 30520 ax-hv0cl 30523 ax-hfvmul 30525 ax-hvmulass 30527 ax-hvmul0 30530 ax-hfi 30599 ax-his1 30602 ax-his2 30603 ax-his3 30604 ax-his4 30605 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-hnorm 30488 df-hvsub 30491 |
This theorem is referenced by: hhnv 30685 hhssnv 30784 nmoptrii 31614 |
Copyright terms: Public domain | W3C validator |