![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > norm-ii | Structured version Visualization version GIF version |
Description: Triangle inequality for norms. Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm-ii | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 +ℎ 𝐵)) ≤ ((normℎ‘𝐴) + (normℎ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7453 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 +ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵))) | |
2 | fveq2 6906 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘𝐴) = (normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) | |
3 | 2 | oveq1d 7445 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((normℎ‘𝐴) + (normℎ‘𝐵)) = ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘𝐵))) |
4 | 1, 3 | breq12d 5160 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((normℎ‘(𝐴 +ℎ 𝐵)) ≤ ((normℎ‘𝐴) + (normℎ‘𝐵)) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵)) ≤ ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘𝐵)))) |
5 | oveq2 7438 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | fveq2d 6910 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
7 | fveq2 6906 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘𝐵) = (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
8 | 7 | oveq2d 7446 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘𝐵)) = ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
9 | 6, 8 | breq12d 5160 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ 𝐵)) ≤ ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘𝐵)) ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
10 | ifhvhv0 31050 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
11 | ifhvhv0 31050 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
12 | 10, 11 | norm-ii-i 31165 | . 2 ⊢ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ≤ ((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) + (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
13 | 4, 9, 12 | dedth2h 4589 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 +ℎ 𝐵)) ≤ ((normℎ‘𝐴) + (normℎ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ifcif 4530 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 + caddc 11155 ≤ cle 11293 ℋchba 30947 +ℎ cva 30948 normℎcno 30951 0ℎc0v 30952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-hfvadd 31028 ax-hv0cl 31031 ax-hfvmul 31033 ax-hvmulass 31035 ax-hvmul0 31038 ax-hfi 31107 ax-his1 31110 ax-his2 31111 ax-his3 31112 ax-his4 31113 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-hnorm 30996 df-hvsub 30999 |
This theorem is referenced by: hhnv 31193 hhssnv 31292 nmoptrii 32122 |
Copyright terms: Public domain | W3C validator |