HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normsub0 Structured version   Visualization version   GIF version

Theorem normsub0 30384
Description: Two vectors are equal iff the norm of their difference is zero. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
normsub0 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((norm‘(𝐴 𝐵)) = 0 ↔ 𝐴 = 𝐵))

Proof of Theorem normsub0
StepHypRef Expression
1 fvoveq1 7431 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
21eqeq1d 2734 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐵)) = 0 ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = 0))
3 eqeq1 2736 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 = 𝐵 ↔ if(𝐴 ∈ ℋ, 𝐴, 0) = 𝐵))
42, 3bibi12d 345 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 𝐵)) = 0 ↔ 𝐴 = 𝐵) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0) = 𝐵)))
5 oveq2 7416 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
65fveqeq2d 6899 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = 0 ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) = 0))
7 eqeq2 2744 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) = 𝐵 ↔ if(𝐴 ∈ ℋ, 𝐴, 0) = if(𝐵 ∈ ℋ, 𝐵, 0)))
86, 7bibi12d 345 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0) = 𝐵) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) = 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0) = if(𝐵 ∈ ℋ, 𝐵, 0))))
9 ifhvhv0 30270 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
10 ifhvhv0 30270 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
119, 10normsub0i 30383 . 2 ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) = 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0) = if(𝐵 ∈ ℋ, 𝐵, 0))
124, 8, 11dedth2h 4587 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((norm‘(𝐴 𝐵)) = 0 ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  ifcif 4528  cfv 6543  (class class class)co 7408  0cc0 11109  chba 30167  normcno 30171  0c0v 30172   cmv 30173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-hfvadd 30248  ax-hvcom 30249  ax-hvass 30250  ax-hv0cl 30251  ax-hvaddid 30252  ax-hfvmul 30253  ax-hvmulid 30254  ax-hvdistr2 30257  ax-hvmul0 30258  ax-hfi 30327  ax-his1 30330  ax-his3 30332  ax-his4 30333
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-hnorm 30216  df-hvsub 30219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator