Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > normsub0 | Structured version Visualization version GIF version |
Description: Two vectors are equal iff the norm of their difference is zero. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normsub0 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘(𝐴 −ℎ 𝐵)) = 0 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7258 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵))) | |
2 | 1 | eqeq1d 2741 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((normℎ‘(𝐴 −ℎ 𝐵)) = 0 ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = 0)) |
3 | eqeq1 2743 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 = 𝐵 ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = 𝐵)) | |
4 | 2, 3 | bibi12d 349 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (((normℎ‘(𝐴 −ℎ 𝐵)) = 0 ↔ 𝐴 = 𝐵) ↔ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = 𝐵))) |
5 | oveq2 7243 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | fveqeq2d 6747 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = 0 ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = 0)) |
7 | eqeq2 2751 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = 𝐵 ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
8 | 6, 7 | bibi12d 349 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = 𝐵) ↔ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
9 | ifhvhv0 29135 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
10 | ifhvhv0 29135 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
11 | 9, 10 | normsub0i 29248 | . 2 ⊢ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) |
12 | 4, 8, 11 | dedth2h 4515 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘(𝐴 −ℎ 𝐵)) = 0 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ifcif 4456 ‘cfv 6401 (class class class)co 7235 0cc0 10759 ℋchba 29032 normℎcno 29036 0ℎc0v 29037 −ℎ cmv 29038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 ax-pre-sup 10837 ax-hfvadd 29113 ax-hvcom 29114 ax-hvass 29115 ax-hv0cl 29116 ax-hvaddid 29117 ax-hfvmul 29118 ax-hvmulid 29119 ax-hvdistr2 29122 ax-hvmul0 29123 ax-hfi 29192 ax-his1 29195 ax-his3 29197 ax-his4 29198 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-2nd 7784 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-sup 9088 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-div 11520 df-nn 11861 df-2 11923 df-3 11924 df-n0 12121 df-z 12207 df-uz 12469 df-rp 12617 df-seq 13607 df-exp 13668 df-cj 14695 df-re 14696 df-im 14697 df-sqrt 14831 df-hnorm 29081 df-hvsub 29084 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |