![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normsub0 | Structured version Visualization version GIF version |
Description: Two vectors are equal iff the norm of their difference is zero. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normsub0 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘(𝐴 −ℎ 𝐵)) = 0 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7447 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵))) | |
2 | 1 | eqeq1d 2729 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((normℎ‘(𝐴 −ℎ 𝐵)) = 0 ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = 0)) |
3 | eqeq1 2731 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 = 𝐵 ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = 𝐵)) | |
4 | 2, 3 | bibi12d 344 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (((normℎ‘(𝐴 −ℎ 𝐵)) = 0 ↔ 𝐴 = 𝐵) ↔ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = 𝐵))) |
5 | oveq2 7432 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | fveqeq2d 6908 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = 0 ↔ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = 0)) |
7 | eqeq2 2739 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = 𝐵 ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
8 | 6, 7 | bibi12d 344 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = 𝐵) ↔ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
9 | ifhvhv0 30850 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
10 | ifhvhv0 30850 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
11 | 9, 10 | normsub0i 30963 | . 2 ⊢ ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) |
12 | 4, 8, 11 | dedth2h 4589 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘(𝐴 −ℎ 𝐵)) = 0 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ifcif 4530 ‘cfv 6551 (class class class)co 7424 0cc0 11144 ℋchba 30747 normℎcno 30751 0ℎc0v 30752 −ℎ cmv 30753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 ax-hfvadd 30828 ax-hvcom 30829 ax-hvass 30830 ax-hv0cl 30831 ax-hvaddid 30832 ax-hfvmul 30833 ax-hvmulid 30834 ax-hvdistr2 30837 ax-hvmul0 30838 ax-hfi 30907 ax-his1 30910 ax-his3 30912 ax-his4 30913 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9471 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-n0 12509 df-z 12595 df-uz 12859 df-rp 13013 df-seq 14005 df-exp 14065 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-hnorm 30796 df-hvsub 30799 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |