![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > norm-iii | Structured version Visualization version GIF version |
Description: Theorem 3.3(iii) of [Beran] p. 97. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm-iii | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 ·ℎ 𝐵)) = ((abs‘𝐴) · (normℎ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7449 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (normℎ‘(𝐴 ·ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵))) | |
2 | fveq2 6902 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (abs‘𝐴) = (abs‘if(𝐴 ∈ ℂ, 𝐴, 0))) | |
3 | 2 | oveq1d 7441 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((abs‘𝐴) · (normℎ‘𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘𝐵))) |
4 | 1, 3 | eqeq12d 2744 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((normℎ‘(𝐴 ·ℎ 𝐵)) = ((abs‘𝐴) · (normℎ‘𝐵)) ↔ (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘𝐵)))) |
5 | oveq2 7434 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵) = (if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | fveq2d 6906 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
7 | fveq2 6902 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘𝐵) = (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
8 | 7 | oveq2d 7442 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
9 | 6, 8 | eqeq12d 2744 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘𝐵)) ↔ (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
10 | 0cn 11244 | . . . 4 ⊢ 0 ∈ ℂ | |
11 | 10 | elimel 4601 | . . 3 ⊢ if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ |
12 | ifhvhv0 30852 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
13 | 11, 12 | norm-iii-i 30969 | . 2 ⊢ (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
14 | 4, 9, 13 | dedth2h 4591 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 ·ℎ 𝐵)) = ((abs‘𝐴) · (normℎ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ifcif 4532 ‘cfv 6553 (class class class)co 7426 ℂcc 11144 0cc0 11146 · cmul 11151 abscabs 15221 ℋchba 30749 ·ℎ csm 30751 normℎcno 30753 0ℎc0v 30754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-hv0cl 30833 ax-hfvmul 30835 ax-hvmul0 30840 ax-hfi 30909 ax-his1 30912 ax-his3 30914 ax-his4 30915 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-sup 9473 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-seq 14007 df-exp 14067 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-hnorm 30798 |
This theorem is referenced by: hhnv 30995 norm1 31079 hhssnv 31094 nmbdoplbi 31854 nmcexi 31856 nmcopexi 31857 nmcoplbi 31858 nmophmi 31861 nmopcoi 31925 strlem1 32080 |
Copyright terms: Public domain | W3C validator |