Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > norm-iii | Structured version Visualization version GIF version |
Description: Theorem 3.3(iii) of [Beran] p. 97. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm-iii | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 ·ℎ 𝐵)) = ((abs‘𝐴) · (normℎ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7205 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (normℎ‘(𝐴 ·ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵))) | |
2 | fveq2 6686 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (abs‘𝐴) = (abs‘if(𝐴 ∈ ℂ, 𝐴, 0))) | |
3 | 2 | oveq1d 7197 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((abs‘𝐴) · (normℎ‘𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘𝐵))) |
4 | 1, 3 | eqeq12d 2755 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((normℎ‘(𝐴 ·ℎ 𝐵)) = ((abs‘𝐴) · (normℎ‘𝐵)) ↔ (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘𝐵)))) |
5 | oveq2 7190 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵) = (if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | fveq2d 6690 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
7 | fveq2 6686 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘𝐵) = (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
8 | 7 | oveq2d 7198 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
9 | 6, 8 | eqeq12d 2755 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘𝐵)) ↔ (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
10 | 0cn 10723 | . . . 4 ⊢ 0 ∈ ℂ | |
11 | 10 | elimel 4493 | . . 3 ⊢ if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ |
12 | ifhvhv0 28969 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
13 | 11, 12 | norm-iii-i 29086 | . 2 ⊢ (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
14 | 4, 9, 13 | dedth2h 4483 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 ·ℎ 𝐵)) = ((abs‘𝐴) · (normℎ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ifcif 4424 ‘cfv 6349 (class class class)co 7182 ℂcc 10625 0cc0 10627 · cmul 10632 abscabs 14695 ℋchba 28866 ·ℎ csm 28868 normℎcno 28870 0ℎc0v 28871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 ax-pre-sup 10705 ax-hv0cl 28950 ax-hfvmul 28952 ax-hvmul0 28957 ax-hfi 29026 ax-his1 29029 ax-his3 29031 ax-his4 29032 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-2nd 7727 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-sup 8991 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-div 11388 df-nn 11729 df-2 11791 df-3 11792 df-n0 11989 df-z 12075 df-uz 12337 df-rp 12485 df-seq 13473 df-exp 13534 df-cj 14560 df-re 14561 df-im 14562 df-sqrt 14696 df-abs 14697 df-hnorm 28915 |
This theorem is referenced by: hhnv 29112 norm1 29196 hhssnv 29211 nmbdoplbi 29971 nmcexi 29973 nmcopexi 29974 nmcoplbi 29975 nmophmi 29978 nmopcoi 30042 strlem1 30197 |
Copyright terms: Public domain | W3C validator |