HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopeq0lem2 Structured version   Visualization version   GIF version

Theorem lnopeq0lem2 32025
Description: Lemma for lnopeq0i 32026. (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopeq0.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopeq0lem2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4))

Proof of Theorem lnopeq0lem2
StepHypRef Expression
1 fveq2 6906 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇𝐴) = (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)))
21oveq1d 7446 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵))
3 fvoveq1 7454 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 + 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
4 oveq1 7438 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))
53, 4oveq12d 7449 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
6 fvoveq1 7454 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
7 oveq1 7438 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))
86, 7oveq12d 7449 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
95, 8oveq12d 7449 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))))
10 fvoveq1 7454 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 + (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))))
11 oveq1 7438 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))
1210, 11oveq12d 7449 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))))
13 fvoveq1 7454 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))
14 oveq1 7438 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))
1513, 14oveq12d 7449 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))
1612, 15oveq12d 7449 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))
1716oveq2d 7447 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))))) = (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))))
189, 17oveq12d 7449 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) = ((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))))
1918oveq1d 7446 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4))
202, 19eqeq12d 2753 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4)))
21 oveq2 7439 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
22 oveq2 7439 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
2322fveq2d 6910 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
2423, 22oveq12d 7449 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
25 oveq2 7439 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
2625fveq2d 6910 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2726, 25oveq12d 7449 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2824, 27oveq12d 7449 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))))
29 oveq2 7439 . . . . . . . . . 10 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · 𝐵) = (i · if(𝐵 ∈ ℋ, 𝐵, 0)))
3029oveq2d 7447 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
3130fveq2d 6910 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3231, 30oveq12d 7449 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3329oveq2d 7447 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
3433fveq2d 6910 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3534, 33oveq12d 7449 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3632, 35oveq12d 7449 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))
3736oveq2d 7447 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))) = (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))))
3828, 37oveq12d 7449 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) = ((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))))
3938oveq1d 7446 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))) / 4))
4021, 39eqeq12d 2753 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))) / 4)))
41 lnopeq0.1 . . 3 𝑇 ∈ LinOp
42 ifhvhv0 31041 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
43 ifhvhv0 31041 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
4441, 42, 43lnopeq0lem1 32024 . 2 ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))) / 4)
4520, 40, 44dedth2h 4585 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ifcif 4525  cfv 6561  (class class class)co 7431  ici 11157   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  4c4 12323  chba 30938   + cva 30939   · csm 30940   ·ih csp 30941  0c0v 30943   cmv 30944  LinOpclo 30966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-hilex 31018  ax-hfvadd 31019  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-3 12330  df-4 12331  df-cj 15138  df-re 15139  df-im 15140  df-hvsub 30990  df-lnop 31860
This theorem is referenced by:  lnopeq0i  32026
  Copyright terms: Public domain W3C validator