HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopeq0lem2 Structured version   Visualization version   GIF version

Theorem lnopeq0lem2 29710
Description: Lemma for lnopeq0i 29711. (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopeq0.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopeq0lem2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4))

Proof of Theorem lnopeq0lem2
StepHypRef Expression
1 fveq2 6663 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇𝐴) = (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)))
21oveq1d 7160 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵))
3 fvoveq1 7168 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 + 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
4 oveq1 7152 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))
53, 4oveq12d 7163 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
6 fvoveq1 7168 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
7 oveq1 7152 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))
86, 7oveq12d 7163 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
95, 8oveq12d 7163 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))))
10 fvoveq1 7168 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 + (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))))
11 oveq1 7152 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))
1210, 11oveq12d 7163 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))))
13 fvoveq1 7168 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))
14 oveq1 7152 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))
1513, 14oveq12d 7163 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))
1612, 15oveq12d 7163 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))
1716oveq2d 7161 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))))) = (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))))
189, 17oveq12d 7163 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) = ((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))))
1918oveq1d 7160 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4))
202, 19eqeq12d 2834 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4)))
21 oveq2 7153 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
22 oveq2 7153 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
2322fveq2d 6667 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
2423, 22oveq12d 7163 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
25 oveq2 7153 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
2625fveq2d 6667 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2726, 25oveq12d 7163 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2824, 27oveq12d 7163 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))))
29 oveq2 7153 . . . . . . . . . 10 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · 𝐵) = (i · if(𝐵 ∈ ℋ, 𝐵, 0)))
3029oveq2d 7161 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
3130fveq2d 6667 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3231, 30oveq12d 7163 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3329oveq2d 7161 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
3433fveq2d 6667 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3534, 33oveq12d 7163 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3632, 35oveq12d 7163 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))
3736oveq2d 7161 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))) = (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))))
3828, 37oveq12d 7163 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) = ((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))))
3938oveq1d 7160 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))) / 4))
4021, 39eqeq12d 2834 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))) / 4)))
41 lnopeq0.1 . . 3 𝑇 ∈ LinOp
42 ifhvhv0 28726 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
43 ifhvhv0 28726 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
4441, 42, 43lnopeq0lem1 29709 . 2 ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))) / 4)
4520, 40, 44dedth2h 4520 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  ifcif 4463  cfv 6348  (class class class)co 7145  ici 10527   + caddc 10528   · cmul 10530  cmin 10858   / cdiv 11285  4c4 11682  chba 28623   + cva 28624   · csm 28625   ·ih csp 28626  0c0v 28628   cmv 28629  LinOpclo 28651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-hilex 28703  ax-hfvadd 28704  ax-hvass 28706  ax-hv0cl 28707  ax-hvaddid 28708  ax-hfvmul 28709  ax-hvmulid 28710  ax-hvdistr2 28713  ax-hvmul0 28714  ax-hfi 28783  ax-his1 28786  ax-his2 28787  ax-his3 28788
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-2 11688  df-3 11689  df-4 11690  df-cj 14446  df-re 14447  df-im 14448  df-hvsub 28675  df-lnop 29545
This theorem is referenced by:  lnopeq0i  29711
  Copyright terms: Public domain W3C validator