HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopeq0lem2 Structured version   Visualization version   GIF version

Theorem lnopeq0lem2 30417
Description: Lemma for lnopeq0i 30418. (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopeq0.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopeq0lem2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4))

Proof of Theorem lnopeq0lem2
StepHypRef Expression
1 fveq2 6804 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇𝐴) = (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)))
21oveq1d 7322 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵))
3 fvoveq1 7330 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 + 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
4 oveq1 7314 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))
53, 4oveq12d 7325 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
6 fvoveq1 7330 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
7 oveq1 7314 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))
86, 7oveq12d 7325 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
95, 8oveq12d 7325 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))))
10 fvoveq1 7330 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 + (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))))
11 oveq1 7314 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))
1210, 11oveq12d 7325 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))))
13 fvoveq1 7330 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))
14 oveq1 7314 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))
1513, 14oveq12d 7325 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))
1612, 15oveq12d 7325 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))
1716oveq2d 7323 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))))) = (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))))
189, 17oveq12d 7325 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) = ((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))))
1918oveq1d 7322 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4))
202, 19eqeq12d 2752 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4)))
21 oveq2 7315 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
22 oveq2 7315 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
2322fveq2d 6808 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
2423, 22oveq12d 7325 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
25 oveq2 7315 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
2625fveq2d 6808 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2726, 25oveq12d 7325 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2824, 27oveq12d 7325 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))))
29 oveq2 7315 . . . . . . . . . 10 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · 𝐵) = (i · if(𝐵 ∈ ℋ, 𝐵, 0)))
3029oveq2d 7323 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
3130fveq2d 6808 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3231, 30oveq12d 7325 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3329oveq2d 7323 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
3433fveq2d 6808 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3534, 33oveq12d 7325 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3632, 35oveq12d 7325 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))
3736oveq2d 7323 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))) = (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))))
3828, 37oveq12d 7325 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) = ((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))))
3938oveq1d 7322 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))) / 4))
4021, 39eqeq12d 2752 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))) / 4)))
41 lnopeq0.1 . . 3 𝑇 ∈ LinOp
42 ifhvhv0 29433 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
43 ifhvhv0 29433 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
4441, 42, 43lnopeq0lem1 30416 . 2 ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))) / 4)
4520, 40, 44dedth2h 4524 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  ifcif 4465  cfv 6458  (class class class)co 7307  ici 10923   + caddc 10924   · cmul 10926  cmin 11255   / cdiv 11682  4c4 12080  chba 29330   + cva 29331   · csm 29332   ·ih csp 29333  0c0v 29335   cmv 29336  LinOpclo 29358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-hilex 29410  ax-hfvadd 29411  ax-hvass 29413  ax-hv0cl 29414  ax-hvaddid 29415  ax-hfvmul 29416  ax-hvmulid 29417  ax-hvdistr2 29420  ax-hvmul0 29421  ax-hfi 29490  ax-his1 29493  ax-his2 29494  ax-his3 29495
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-2 12086  df-3 12087  df-4 12088  df-cj 14859  df-re 14860  df-im 14861  df-hvsub 29382  df-lnop 30252
This theorem is referenced by:  lnopeq0i  30418
  Copyright terms: Public domain W3C validator