HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  polid Structured version   Visualization version   GIF version

Theorem polid 31094
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of Axiom ax-his3 31019. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Assertion
Ref Expression
polid ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4))

Proof of Theorem polid
StepHypRef Expression
1 oveq1 7396 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵))
2 fvoveq1 7412 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
32oveq1d 7404 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2))
4 fvoveq1 7412 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
54oveq1d 7404 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2))
63, 5oveq12d 7407 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)))
7 fvoveq1 7412 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 + (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))))
87oveq1d 7404 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 + (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2))
9 fvoveq1 7412 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))
109oveq1d 7404 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))
118, 10oveq12d 7407 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))
1211oveq2d 7405 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2))) = (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))))
136, 12oveq12d 7407 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) = ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))))
1413oveq1d 7404 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4))
151, 14eqeq12d 2746 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4)))
16 oveq2 7397 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
17 oveq2 7397 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
1817fveq2d 6864 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
1918oveq1d 7404 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
20 oveq2 7397 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
2120fveq2d 6864 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2221oveq1d 7404 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
2319, 22oveq12d 7407 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)))
24 oveq2 7397 . . . . . . . . . 10 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · 𝐵) = (i · if(𝐵 ∈ ℋ, 𝐵, 0)))
2524oveq2d 7405 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
2625fveq2d 6864 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
2726oveq1d 7404 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))
2824oveq2d 7405 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
2928fveq2d 6864 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3029oveq1d 7404 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))
3127, 30oveq12d 7407 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))
3231oveq2d 7405 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))) = (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))))
3323, 32oveq12d 7407 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) = ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))))
3433oveq1d 7404 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4))
3516, 34eqeq12d 2746 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4)))
36 ifhvhv0 30957 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
37 ifhvhv0 30957 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
3836, 37polidi 31093 . 2 (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4)
3915, 35, 38dedth2h 4550 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4490  cfv 6513  (class class class)co 7389  ici 11076   + caddc 11077   · cmul 11079  cmin 11411   / cdiv 11841  2c2 12242  4c4 12244  cexp 14032  chba 30854   + cva 30855   · csm 30856   ·ih csp 30857  normcno 30858  0c0v 30859   cmv 30860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-hfvadd 30935  ax-hv0cl 30938  ax-hfvmul 30940  ax-hvmul0 30945  ax-hfi 31014  ax-his1 31017  ax-his2 31018  ax-his3 31019  ax-his4 31020
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-seq 13973  df-exp 14033  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-hnorm 30903  df-hvsub 30906
This theorem is referenced by:  hhip  31112
  Copyright terms: Public domain W3C validator