HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  polid Structured version   Visualization version   GIF version

Theorem polid 28945
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of axiom ax-his3 28870. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Assertion
Ref Expression
polid ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4))

Proof of Theorem polid
StepHypRef Expression
1 oveq1 7146 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵))
2 fvoveq1 7162 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
32oveq1d 7154 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2))
4 fvoveq1 7162 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
54oveq1d 7154 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2))
63, 5oveq12d 7157 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)))
7 fvoveq1 7162 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 + (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))))
87oveq1d 7154 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 + (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2))
9 fvoveq1 7162 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))
109oveq1d 7154 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))
118, 10oveq12d 7157 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))
1211oveq2d 7155 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2))) = (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))))
136, 12oveq12d 7157 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) = ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))))
1413oveq1d 7154 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4))
151, 14eqeq12d 2817 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4)))
16 oveq2 7147 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
17 oveq2 7147 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
1817fveq2d 6653 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
1918oveq1d 7154 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
20 oveq2 7147 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
2120fveq2d 6653 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2221oveq1d 7154 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
2319, 22oveq12d 7157 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)))
24 oveq2 7147 . . . . . . . . . 10 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · 𝐵) = (i · if(𝐵 ∈ ℋ, 𝐵, 0)))
2524oveq2d 7155 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
2625fveq2d 6653 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
2726oveq1d 7154 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))
2824oveq2d 7155 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
2928fveq2d 6653 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3029oveq1d 7154 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))
3127, 30oveq12d 7157 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))
3231oveq2d 7155 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))) = (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))))
3323, 32oveq12d 7157 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) = ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))))
3433oveq1d 7154 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4))
3516, 34eqeq12d 2817 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4)))
36 ifhvhv0 28808 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
37 ifhvhv0 28808 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
3836, 37polidi 28944 . 2 (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4)
3915, 35, 38dedth2h 4485 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  ifcif 4428  cfv 6328  (class class class)co 7139  ici 10532   + caddc 10533   · cmul 10535  cmin 10863   / cdiv 11290  2c2 11684  4c4 11686  cexp 13429  chba 28705   + cva 28706   · csm 28707   ·ih csp 28708  normcno 28709  0c0v 28710   cmv 28711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-hfvadd 28786  ax-hv0cl 28789  ax-hfvmul 28791  ax-hvmul0 28796  ax-hfi 28865  ax-his1 28868  ax-his2 28869  ax-his3 28870  ax-his4 28871
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-hnorm 28754  df-hvsub 28757
This theorem is referenced by:  hhip  28963
  Copyright terms: Public domain W3C validator