HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  polid Structured version   Visualization version   GIF version

Theorem polid 31138
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of Axiom ax-his3 31063. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Assertion
Ref Expression
polid ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4))

Proof of Theorem polid
StepHypRef Expression
1 oveq1 7376 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵))
2 fvoveq1 7392 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
32oveq1d 7384 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2))
4 fvoveq1 7392 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
54oveq1d 7384 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2))
63, 5oveq12d 7387 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)))
7 fvoveq1 7392 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 + (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))))
87oveq1d 7384 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 + (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2))
9 fvoveq1 7392 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))
109oveq1d 7384 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))
118, 10oveq12d 7387 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))
1211oveq2d 7385 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2))) = (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))))
136, 12oveq12d 7387 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) = ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))))
1413oveq1d 7384 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4))
151, 14eqeq12d 2745 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4)))
16 oveq2 7377 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
17 oveq2 7377 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
1817fveq2d 6844 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
1918oveq1d 7384 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
20 oveq2 7377 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
2120fveq2d 6844 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2221oveq1d 7384 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
2319, 22oveq12d 7387 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)))
24 oveq2 7377 . . . . . . . . . 10 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · 𝐵) = (i · if(𝐵 ∈ ℋ, 𝐵, 0)))
2524oveq2d 7385 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
2625fveq2d 6844 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
2726oveq1d 7384 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))
2824oveq2d 7385 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
2928fveq2d 6844 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3029oveq1d 7384 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))
3127, 30oveq12d 7387 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))
3231oveq2d 7385 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))) = (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))))
3323, 32oveq12d 7387 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) = ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))))
3433oveq1d 7384 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4))
3516, 34eqeq12d 2745 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4)))
36 ifhvhv0 31001 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
37 ifhvhv0 31001 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
3836, 37polidi 31137 . 2 (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4)
3915, 35, 38dedth2h 4544 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4484  cfv 6499  (class class class)co 7369  ici 11046   + caddc 11047   · cmul 11049  cmin 11381   / cdiv 11811  2c2 12217  4c4 12219  cexp 14002  chba 30898   + cva 30899   · csm 30900   ·ih csp 30901  normcno 30902  0c0v 30903   cmv 30904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-hfvadd 30979  ax-hv0cl 30982  ax-hfvmul 30984  ax-hvmul0 30989  ax-hfi 31058  ax-his1 31061  ax-his2 31062  ax-his3 31063  ax-his4 31064
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-hnorm 30947  df-hvsub 30950
This theorem is referenced by:  hhip  31156
  Copyright terms: Public domain W3C validator