HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  polid Structured version   Visualization version   GIF version

Theorem polid 29194
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of Axiom ax-his3 29119. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Assertion
Ref Expression
polid ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4))

Proof of Theorem polid
StepHypRef Expression
1 oveq1 7198 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵))
2 fvoveq1 7214 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
32oveq1d 7206 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2))
4 fvoveq1 7214 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
54oveq1d 7206 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2))
63, 5oveq12d 7209 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)))
7 fvoveq1 7214 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 + (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))))
87oveq1d 7206 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 + (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2))
9 fvoveq1 7214 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))
109oveq1d 7206 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))
118, 10oveq12d 7209 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))
1211oveq2d 7207 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2))) = (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))))
136, 12oveq12d 7209 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) = ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))))
1413oveq1d 7206 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4))
151, 14eqeq12d 2752 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4)))
16 oveq2 7199 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
17 oveq2 7199 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
1817fveq2d 6699 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
1918oveq1d 7206 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
20 oveq2 7199 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
2120fveq2d 6699 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2221oveq1d 7206 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
2319, 22oveq12d 7209 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)))
24 oveq2 7199 . . . . . . . . . 10 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · 𝐵) = (i · if(𝐵 ∈ ℋ, 𝐵, 0)))
2524oveq2d 7207 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
2625fveq2d 6699 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
2726oveq1d 7206 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))
2824oveq2d 7207 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
2928fveq2d 6699 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3029oveq1d 7206 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))
3127, 30oveq12d 7209 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))
3231oveq2d 7207 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))) = (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))))
3323, 32oveq12d 7209 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) = ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))))
3433oveq1d 7206 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4))
3516, 34eqeq12d 2752 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4)))
36 ifhvhv0 29057 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
37 ifhvhv0 29057 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
3836, 37polidi 29193 . 2 (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4)
3915, 35, 38dedth2h 4484 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  ifcif 4425  cfv 6358  (class class class)co 7191  ici 10696   + caddc 10697   · cmul 10699  cmin 11027   / cdiv 11454  2c2 11850  4c4 11852  cexp 13600  chba 28954   + cva 28955   · csm 28956   ·ih csp 28957  normcno 28958  0c0v 28959   cmv 28960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-hfvadd 29035  ax-hv0cl 29038  ax-hfvmul 29040  ax-hvmul0 29045  ax-hfi 29114  ax-his1 29117  ax-his2 29118  ax-his3 29119  ax-his4 29120
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-hnorm 29003  df-hvsub 29006
This theorem is referenced by:  hhip  29212
  Copyright terms: Public domain W3C validator