| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > norm3adifi | Structured version Visualization version GIF version | ||
| Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 3-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| norm3adift.1 | ⊢ 𝐶 ∈ ℋ |
| Ref | Expression |
|---|---|
| norm3adifi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 7436 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 −ℎ 𝐶)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶))) | |
| 2 | 1 | fvoveq1d 7435 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) = (abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))))) |
| 3 | fvoveq1 7436 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵))) | |
| 4 | 2, 3 | breq12d 5136 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) ↔ (abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)))) |
| 5 | fvoveq1 7436 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(𝐵 −ℎ 𝐶)) = (normℎ‘(if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ 𝐶))) | |
| 6 | 5 | oveq2d 7429 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) = ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ 𝐶)))) |
| 7 | 6 | fveq2d 6890 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) = (abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ 𝐶))))) |
| 8 | oveq2 7421 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
| 9 | 8 | fveq2d 6890 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
| 10 | 7, 9 | breq12d 5136 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) ↔ (abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ 𝐶)))) ≤ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
| 11 | ifhvhv0 30969 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
| 12 | ifhvhv0 30969 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
| 13 | norm3adift.1 | . . 3 ⊢ 𝐶 ∈ ℋ | |
| 14 | 11, 12, 13 | norm3adifii 31095 | . 2 ⊢ (abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ 𝐶)))) ≤ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
| 15 | 4, 10, 14 | dedth2h 4565 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ifcif 4505 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 ≤ cle 11278 − cmin 11474 abscabs 15255 ℋchba 30866 normℎcno 30870 0ℎc0v 30871 −ℎ cmv 30872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-hfvadd 30947 ax-hvcom 30948 ax-hvass 30949 ax-hv0cl 30950 ax-hvaddid 30951 ax-hfvmul 30952 ax-hvmulid 30953 ax-hvmulass 30954 ax-hvdistr1 30955 ax-hvdistr2 30956 ax-hvmul0 30957 ax-hfi 31026 ax-his1 31029 ax-his2 31030 ax-his3 31031 ax-his4 31032 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-hnorm 30915 df-hvsub 30918 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |