| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > norm3adifi | Structured version Visualization version GIF version | ||
| Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 3-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| norm3adift.1 | ⊢ 𝐶 ∈ ℋ |
| Ref | Expression |
|---|---|
| norm3adifi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 7412 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 −ℎ 𝐶)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶))) | |
| 2 | 1 | fvoveq1d 7411 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) = (abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))))) |
| 3 | fvoveq1 7412 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵))) | |
| 4 | 2, 3 | breq12d 5122 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) ↔ (abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)))) |
| 5 | fvoveq1 7412 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(𝐵 −ℎ 𝐶)) = (normℎ‘(if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ 𝐶))) | |
| 6 | 5 | oveq2d 7405 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) = ((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ 𝐶)))) |
| 7 | 6 | fveq2d 6864 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) = (abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ 𝐶))))) |
| 8 | oveq2 7397 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
| 9 | 8 | fveq2d 6864 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
| 10 | 7, 9 | breq12d 5122 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) ↔ (abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ 𝐶)))) ≤ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
| 11 | ifhvhv0 30957 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
| 12 | ifhvhv0 30957 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
| 13 | norm3adift.1 | . . 3 ⊢ 𝐶 ∈ ℋ | |
| 14 | 11, 12, 13 | norm3adifii 31083 | . 2 ⊢ (abs‘((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐶)) − (normℎ‘(if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ 𝐶)))) ≤ (normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
| 15 | 4, 10, 14 | dedth2h 4550 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4490 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 ≤ cle 11215 − cmin 11411 abscabs 15206 ℋchba 30854 normℎcno 30858 0ℎc0v 30859 −ℎ cmv 30860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-hfvadd 30935 ax-hvcom 30936 ax-hvass 30937 ax-hv0cl 30938 ax-hvaddid 30939 ax-hfvmul 30940 ax-hvmulid 30941 ax-hvmulass 30942 ax-hvdistr1 30943 ax-hvdistr2 30944 ax-hvmul0 30945 ax-hfi 31014 ax-his1 31017 ax-his2 31018 ax-his3 31019 ax-his4 31020 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-hnorm 30903 df-hvsub 30906 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |