![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopunii | Structured version Visualization version GIF version |
Description: If a linear operator (whose range is ℋ) is idempotent in the norm, the operator is unitary. Similar to theorem in [AkhiezerGlazman] p. 73. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopuni.1 | ⊢ 𝑇 ∈ LinOp |
lnopuni.2 | ⊢ 𝑇: ℋ–onto→ ℋ |
lnopuni.3 | ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) |
Ref | Expression |
---|---|
lnopunii | ⊢ 𝑇 ∈ UniOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopuni.2 | . 2 ⊢ 𝑇: ℋ–onto→ ℋ | |
2 | fveq2 6437 | . . . . . 6 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (𝑇‘𝑥) = (𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) | |
3 | 2 | oveq1d 6925 | . . . . 5 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦))) |
4 | oveq1 6917 | . . . . 5 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (𝑥 ·ih 𝑦) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦)) | |
5 | 3, 4 | eqeq12d 2840 | . . . 4 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦))) |
6 | fveq2 6437 | . . . . . 6 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (𝑇‘𝑦) = (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
7 | 6 | oveq2d 6926 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)))) |
8 | oveq2 6918 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
9 | 7, 8 | eqeq12d 2840 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦) ↔ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ)))) |
10 | lnopuni.1 | . . . . 5 ⊢ 𝑇 ∈ LinOp | |
11 | lnopuni.3 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) | |
12 | ifhvhv0 28430 | . . . . 5 ⊢ if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ∈ ℋ | |
13 | ifhvhv0 28430 | . . . . 5 ⊢ if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ∈ ℋ | |
14 | 10, 11, 12, 13 | lnopunilem2 29421 | . . . 4 ⊢ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) |
15 | 5, 9, 14 | dedth2h 4365 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
16 | 15 | rgen2a 3186 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦) |
17 | elunop 29282 | . 2 ⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) | |
18 | 1, 16, 17 | mpbir2an 702 | 1 ⊢ 𝑇 ∈ UniOp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ∈ wcel 2164 ∀wral 3117 ifcif 4308 –onto→wfo 6125 ‘cfv 6127 (class class class)co 6910 ℋchba 28327 ·ih csp 28330 normℎcno 28331 0ℎc0v 28332 LinOpclo 28355 UniOpcuo 28357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-hilex 28407 ax-hfvadd 28408 ax-hv0cl 28411 ax-hfvmul 28413 ax-hvmul0 28418 ax-hfi 28487 ax-his1 28490 ax-his2 28491 ax-his3 28492 ax-his4 28493 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-map 8129 df-en 8229 df-dom 8230 df-sdom 8231 df-sup 8623 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-n0 11626 df-z 11712 df-uz 11976 df-rp 12120 df-seq 13103 df-exp 13162 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-hnorm 28376 df-lnop 29251 df-unop 29253 |
This theorem is referenced by: elunop2 29423 |
Copyright terms: Public domain | W3C validator |