| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopunii | Structured version Visualization version GIF version | ||
| Description: If a linear operator (whose range is ℋ) is idempotent in the norm, the operator is unitary. Similar to theorem in [AkhiezerGlazman] p. 73. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopuni.1 | ⊢ 𝑇 ∈ LinOp |
| lnopuni.2 | ⊢ 𝑇: ℋ–onto→ ℋ |
| lnopuni.3 | ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) |
| Ref | Expression |
|---|---|
| lnopunii | ⊢ 𝑇 ∈ UniOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopuni.2 | . 2 ⊢ 𝑇: ℋ–onto→ ℋ | |
| 2 | fveq2 6858 | . . . . . 6 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (𝑇‘𝑥) = (𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) | |
| 3 | 2 | oveq1d 7402 | . . . . 5 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦))) |
| 4 | oveq1 7394 | . . . . 5 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (𝑥 ·ih 𝑦) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦)) | |
| 5 | 3, 4 | eqeq12d 2745 | . . . 4 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦))) |
| 6 | fveq2 6858 | . . . . . 6 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (𝑇‘𝑦) = (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
| 7 | 6 | oveq2d 7403 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)))) |
| 8 | oveq2 7395 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
| 9 | 7, 8 | eqeq12d 2745 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦) ↔ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ)))) |
| 10 | lnopuni.1 | . . . . 5 ⊢ 𝑇 ∈ LinOp | |
| 11 | lnopuni.3 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) | |
| 12 | ifhvhv0 30951 | . . . . 5 ⊢ if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ∈ ℋ | |
| 13 | ifhvhv0 30951 | . . . . 5 ⊢ if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ∈ ℋ | |
| 14 | 10, 11, 12, 13 | lnopunilem2 31940 | . . . 4 ⊢ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) |
| 15 | 5, 9, 14 | dedth2h 4548 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 16 | 15 | rgen2 3177 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦) |
| 17 | elunop 31801 | . 2 ⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) | |
| 18 | 1, 16, 17 | mpbir2an 711 | 1 ⊢ 𝑇 ∈ UniOp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 ifcif 4488 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 ℋchba 30848 ·ih csp 30851 normℎcno 30852 0ℎc0v 30853 LinOpclo 30876 UniOpcuo 30878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-hilex 30928 ax-hfvadd 30929 ax-hv0cl 30932 ax-hfvmul 30934 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his2 31012 ax-his3 31013 ax-his4 31014 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-hnorm 30897 df-lnop 31770 df-unop 31772 |
| This theorem is referenced by: elunop2 31942 |
| Copyright terms: Public domain | W3C validator |