Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnopunii | Structured version Visualization version GIF version |
Description: If a linear operator (whose range is ℋ) is idempotent in the norm, the operator is unitary. Similar to theorem in [AkhiezerGlazman] p. 73. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopuni.1 | ⊢ 𝑇 ∈ LinOp |
lnopuni.2 | ⊢ 𝑇: ℋ–onto→ ℋ |
lnopuni.3 | ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) |
Ref | Expression |
---|---|
lnopunii | ⊢ 𝑇 ∈ UniOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopuni.2 | . 2 ⊢ 𝑇: ℋ–onto→ ℋ | |
2 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (𝑇‘𝑥) = (𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) | |
3 | 2 | oveq1d 7270 | . . . . 5 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦))) |
4 | oveq1 7262 | . . . . 5 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (𝑥 ·ih 𝑦) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦)) | |
5 | 3, 4 | eqeq12d 2754 | . . . 4 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦))) |
6 | fveq2 6756 | . . . . . 6 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (𝑇‘𝑦) = (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
7 | 6 | oveq2d 7271 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)))) |
8 | oveq2 7263 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
9 | 7, 8 | eqeq12d 2754 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦) ↔ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ)))) |
10 | lnopuni.1 | . . . . 5 ⊢ 𝑇 ∈ LinOp | |
11 | lnopuni.3 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) | |
12 | ifhvhv0 29285 | . . . . 5 ⊢ if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ∈ ℋ | |
13 | ifhvhv0 29285 | . . . . 5 ⊢ if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ∈ ℋ | |
14 | 10, 11, 12, 13 | lnopunilem2 30274 | . . . 4 ⊢ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) |
15 | 5, 9, 14 | dedth2h 4515 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
16 | 15 | rgen2 3126 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦) |
17 | elunop 30135 | . 2 ⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) | |
18 | 1, 16, 17 | mpbir2an 707 | 1 ⊢ 𝑇 ∈ UniOp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∀wral 3063 ifcif 4456 –onto→wfo 6416 ‘cfv 6418 (class class class)co 7255 ℋchba 29182 ·ih csp 29185 normℎcno 29186 0ℎc0v 29187 LinOpclo 29210 UniOpcuo 29212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-hilex 29262 ax-hfvadd 29263 ax-hv0cl 29266 ax-hfvmul 29268 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-hnorm 29231 df-lnop 30104 df-unop 30106 |
This theorem is referenced by: elunop2 30276 |
Copyright terms: Public domain | W3C validator |