| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopunii | Structured version Visualization version GIF version | ||
| Description: If a linear operator (whose range is ℋ) is idempotent in the norm, the operator is unitary. Similar to theorem in [AkhiezerGlazman] p. 73. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopuni.1 | ⊢ 𝑇 ∈ LinOp |
| lnopuni.2 | ⊢ 𝑇: ℋ–onto→ ℋ |
| lnopuni.3 | ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) |
| Ref | Expression |
|---|---|
| lnopunii | ⊢ 𝑇 ∈ UniOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopuni.2 | . 2 ⊢ 𝑇: ℋ–onto→ ℋ | |
| 2 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (𝑇‘𝑥) = (𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) | |
| 3 | 2 | oveq1d 7364 | . . . . 5 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦))) |
| 4 | oveq1 7356 | . . . . 5 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (𝑥 ·ih 𝑦) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦)) | |
| 5 | 3, 4 | eqeq12d 2745 | . . . 4 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦))) |
| 6 | fveq2 6822 | . . . . . 6 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (𝑇‘𝑦) = (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
| 7 | 6 | oveq2d 7365 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)))) |
| 8 | oveq2 7357 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
| 9 | 7, 8 | eqeq12d 2745 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘𝑦)) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih 𝑦) ↔ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ)))) |
| 10 | lnopuni.1 | . . . . 5 ⊢ 𝑇 ∈ LinOp | |
| 11 | lnopuni.3 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) | |
| 12 | ifhvhv0 30966 | . . . . 5 ⊢ if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ∈ ℋ | |
| 13 | ifhvhv0 30966 | . . . . 5 ⊢ if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ∈ ℋ | |
| 14 | 10, 11, 12, 13 | lnopunilem2 31955 | . . . 4 ⊢ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) = (if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ·ih if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) |
| 15 | 5, 9, 14 | dedth2h 4536 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 16 | 15 | rgen2 3169 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦) |
| 17 | elunop 31816 | . 2 ⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) | |
| 18 | 1, 16, 17 | mpbir2an 711 | 1 ⊢ 𝑇 ∈ UniOp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 ifcif 4476 –onto→wfo 6480 ‘cfv 6482 (class class class)co 7349 ℋchba 30863 ·ih csp 30866 normℎcno 30867 0ℎc0v 30868 LinOpclo 30891 UniOpcuo 30893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-hilex 30943 ax-hfvadd 30944 ax-hv0cl 30947 ax-hfvmul 30949 ax-hvmul0 30954 ax-hfi 31023 ax-his1 31026 ax-his2 31027 ax-his3 31028 ax-his4 31029 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-hnorm 30912 df-lnop 31785 df-unop 31787 |
| This theorem is referenced by: elunop2 31957 |
| Copyright terms: Public domain | W3C validator |