![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopunii | Structured version Visualization version GIF version |
Description: If a linear operator (whose range is โ) is idempotent in the norm, the operator is unitary. Similar to theorem in [AkhiezerGlazman] p. 73. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopuni.1 | โข ๐ โ LinOp |
lnopuni.2 | โข ๐: โโontoโ โ |
lnopuni.3 | โข โ๐ฅ โ โ (normโโ(๐โ๐ฅ)) = (normโโ๐ฅ) |
Ref | Expression |
---|---|
lnopunii | โข ๐ โ UniOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopuni.2 | . 2 โข ๐: โโontoโ โ | |
2 | fveq2 6891 | . . . . . 6 โข (๐ฅ = if(๐ฅ โ โ, ๐ฅ, 0โ) โ (๐โ๐ฅ) = (๐โif(๐ฅ โ โ, ๐ฅ, 0โ))) | |
3 | 2 | oveq1d 7423 | . . . . 5 โข (๐ฅ = if(๐ฅ โ โ, ๐ฅ, 0โ) โ ((๐โ๐ฅ) ยทih (๐โ๐ฆ)) = ((๐โif(๐ฅ โ โ, ๐ฅ, 0โ)) ยทih (๐โ๐ฆ))) |
4 | oveq1 7415 | . . . . 5 โข (๐ฅ = if(๐ฅ โ โ, ๐ฅ, 0โ) โ (๐ฅ ยทih ๐ฆ) = (if(๐ฅ โ โ, ๐ฅ, 0โ) ยทih ๐ฆ)) | |
5 | 3, 4 | eqeq12d 2748 | . . . 4 โข (๐ฅ = if(๐ฅ โ โ, ๐ฅ, 0โ) โ (((๐โ๐ฅ) ยทih (๐โ๐ฆ)) = (๐ฅ ยทih ๐ฆ) โ ((๐โif(๐ฅ โ โ, ๐ฅ, 0โ)) ยทih (๐โ๐ฆ)) = (if(๐ฅ โ โ, ๐ฅ, 0โ) ยทih ๐ฆ))) |
6 | fveq2 6891 | . . . . . 6 โข (๐ฆ = if(๐ฆ โ โ, ๐ฆ, 0โ) โ (๐โ๐ฆ) = (๐โif(๐ฆ โ โ, ๐ฆ, 0โ))) | |
7 | 6 | oveq2d 7424 | . . . . 5 โข (๐ฆ = if(๐ฆ โ โ, ๐ฆ, 0โ) โ ((๐โif(๐ฅ โ โ, ๐ฅ, 0โ)) ยทih (๐โ๐ฆ)) = ((๐โif(๐ฅ โ โ, ๐ฅ, 0โ)) ยทih (๐โif(๐ฆ โ โ, ๐ฆ, 0โ)))) |
8 | oveq2 7416 | . . . . 5 โข (๐ฆ = if(๐ฆ โ โ, ๐ฆ, 0โ) โ (if(๐ฅ โ โ, ๐ฅ, 0โ) ยทih ๐ฆ) = (if(๐ฅ โ โ, ๐ฅ, 0โ) ยทih if(๐ฆ โ โ, ๐ฆ, 0โ))) | |
9 | 7, 8 | eqeq12d 2748 | . . . 4 โข (๐ฆ = if(๐ฆ โ โ, ๐ฆ, 0โ) โ (((๐โif(๐ฅ โ โ, ๐ฅ, 0โ)) ยทih (๐โ๐ฆ)) = (if(๐ฅ โ โ, ๐ฅ, 0โ) ยทih ๐ฆ) โ ((๐โif(๐ฅ โ โ, ๐ฅ, 0โ)) ยทih (๐โif(๐ฆ โ โ, ๐ฆ, 0โ))) = (if(๐ฅ โ โ, ๐ฅ, 0โ) ยทih if(๐ฆ โ โ, ๐ฆ, 0โ)))) |
10 | lnopuni.1 | . . . . 5 โข ๐ โ LinOp | |
11 | lnopuni.3 | . . . . 5 โข โ๐ฅ โ โ (normโโ(๐โ๐ฅ)) = (normโโ๐ฅ) | |
12 | ifhvhv0 30270 | . . . . 5 โข if(๐ฅ โ โ, ๐ฅ, 0โ) โ โ | |
13 | ifhvhv0 30270 | . . . . 5 โข if(๐ฆ โ โ, ๐ฆ, 0โ) โ โ | |
14 | 10, 11, 12, 13 | lnopunilem2 31259 | . . . 4 โข ((๐โif(๐ฅ โ โ, ๐ฅ, 0โ)) ยทih (๐โif(๐ฆ โ โ, ๐ฆ, 0โ))) = (if(๐ฅ โ โ, ๐ฅ, 0โ) ยทih if(๐ฆ โ โ, ๐ฆ, 0โ)) |
15 | 5, 9, 14 | dedth2h 4587 | . . 3 โข ((๐ฅ โ โ โง ๐ฆ โ โ) โ ((๐โ๐ฅ) ยทih (๐โ๐ฆ)) = (๐ฅ ยทih ๐ฆ)) |
16 | 15 | rgen2 3197 | . 2 โข โ๐ฅ โ โ โ๐ฆ โ โ ((๐โ๐ฅ) ยทih (๐โ๐ฆ)) = (๐ฅ ยทih ๐ฆ) |
17 | elunop 31120 | . 2 โข (๐ โ UniOp โ (๐: โโontoโ โ โง โ๐ฅ โ โ โ๐ฆ โ โ ((๐โ๐ฅ) ยทih (๐โ๐ฆ)) = (๐ฅ ยทih ๐ฆ))) | |
18 | 1, 16, 17 | mpbir2an 709 | 1 โข ๐ โ UniOp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 โ wcel 2106 โwral 3061 ifcif 4528 โontoโwfo 6541 โcfv 6543 (class class class)co 7408 โchba 30167 ยทih csp 30170 normโcno 30171 0โc0v 30172 LinOpclo 30195 UniOpcuo 30197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-hilex 30247 ax-hfvadd 30248 ax-hv0cl 30251 ax-hfvmul 30253 ax-hvmul0 30258 ax-hfi 30327 ax-his1 30330 ax-his2 30331 ax-his3 30332 ax-his4 30333 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-hnorm 30216 df-lnop 31089 df-unop 31091 |
This theorem is referenced by: elunop2 31261 |
Copyright terms: Public domain | W3C validator |