Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopunii Structured version   Visualization version   GIF version

Theorem lnopunii 29774
 Description: If a linear operator (whose range is ℋ) is idempotent in the norm, the operator is unitary. Similar to theorem in [AkhiezerGlazman] p. 73. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopuni.1 𝑇 ∈ LinOp
lnopuni.2 𝑇: ℋ–onto→ ℋ
lnopuni.3 𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)
Assertion
Ref Expression
lnopunii 𝑇 ∈ UniOp
Distinct variable group:   𝑥,𝑇

Proof of Theorem lnopunii
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lnopuni.2 . 2 𝑇: ℋ–onto→ ℋ
2 fveq2 6646 . . . . . 6 (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0) → (𝑇𝑥) = (𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0)))
32oveq1d 7148 . . . . 5 (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0) → ((𝑇𝑥) ·ih (𝑇𝑦)) = ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0)) ·ih (𝑇𝑦)))
4 oveq1 7140 . . . . 5 (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0) → (𝑥 ·ih 𝑦) = (if(𝑥 ∈ ℋ, 𝑥, 0) ·ih 𝑦))
53, 4eqeq12d 2836 . . . 4 (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0) → (((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0)) ·ih (𝑇𝑦)) = (if(𝑥 ∈ ℋ, 𝑥, 0) ·ih 𝑦)))
6 fveq2 6646 . . . . . 6 (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0) → (𝑇𝑦) = (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0)))
76oveq2d 7149 . . . . 5 (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0) → ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0)) ·ih (𝑇𝑦)) = ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0))))
8 oveq2 7141 . . . . 5 (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0) → (if(𝑥 ∈ ℋ, 𝑥, 0) ·ih 𝑦) = (if(𝑥 ∈ ℋ, 𝑥, 0) ·ih if(𝑦 ∈ ℋ, 𝑦, 0)))
97, 8eqeq12d 2836 . . . 4 (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0) → (((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0)) ·ih (𝑇𝑦)) = (if(𝑥 ∈ ℋ, 𝑥, 0) ·ih 𝑦) ↔ ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0))) = (if(𝑥 ∈ ℋ, 𝑥, 0) ·ih if(𝑦 ∈ ℋ, 𝑦, 0))))
10 lnopuni.1 . . . . 5 𝑇 ∈ LinOp
11 lnopuni.3 . . . . 5 𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)
12 ifhvhv0 28784 . . . . 5 if(𝑥 ∈ ℋ, 𝑥, 0) ∈ ℋ
13 ifhvhv0 28784 . . . . 5 if(𝑦 ∈ ℋ, 𝑦, 0) ∈ ℋ
1410, 11, 12, 13lnopunilem2 29773 . . . 4 ((𝑇‘if(𝑥 ∈ ℋ, 𝑥, 0)) ·ih (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0))) = (if(𝑥 ∈ ℋ, 𝑥, 0) ·ih if(𝑦 ∈ ℋ, 𝑦, 0))
155, 9, 14dedth2h 4500 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
1615rgen2 3190 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)
17 elunop 29634 . 2 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
181, 16, 17mpbir2an 709 1 𝑇 ∈ UniOp
 Colors of variables: wff setvar class Syntax hints:   = wceq 1537   ∈ wcel 2114  ∀wral 3125  ifcif 4443  –onto→wfo 6329  ‘cfv 6331  (class class class)co 7133   ℋchba 28681   ·ih csp 28684  normℎcno 28685  0ℎc0v 28686  LinOpclo 28709  UniOpcuo 28711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593  ax-hilex 28761  ax-hfvadd 28762  ax-hv0cl 28765  ax-hfvmul 28767  ax-hvmul0 28772  ax-hfi 28841  ax-his1 28844  ax-his2 28845  ax-his3 28846  ax-his4 28847 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-map 8386  df-en 8488  df-dom 8489  df-sdom 8490  df-sup 8884  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-n0 11877  df-z 11961  df-uz 12223  df-rp 12369  df-seq 13354  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-hnorm 28730  df-lnop 29603  df-unop 29605 This theorem is referenced by:  elunop2  29775
 Copyright terms: Public domain W3C validator