HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpyth Structured version   Visualization version   GIF version

Theorem normpyth 31081
Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
normpyth ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2))))

Proof of Theorem normpyth
StepHypRef Expression
1 oveq1 7433 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵))
21eqeq1d 2728 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih 𝐵) = 0 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0))
3 fvoveq1 7449 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
43oveq1d 7441 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2))
5 fveq2 6903 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm𝐴) = (norm‘if(𝐴 ∈ ℋ, 𝐴, 0)))
65oveq1d 7441 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm𝐴)↑2) = ((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2))
76oveq1d 7441 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm𝐴)↑2) + ((norm𝐵)↑2)) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm𝐵)↑2)))
84, 7eqeq12d 2742 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm𝐵)↑2))))
92, 8imbi12d 343 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2))) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0 → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm𝐵)↑2)))))
10 oveq2 7434 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
1110eqeq1d 2728 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))
12 oveq2 7434 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
1312fveq2d 6907 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
1413oveq1d 7441 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
15 fveq2 6903 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm𝐵) = (norm‘if(𝐵 ∈ ℋ, 𝐵, 0)))
1615oveq1d 7441 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm𝐵)↑2) = ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2))
1716oveq2d 7442 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm𝐵)↑2)) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2)))
1814, 17eqeq12d 2742 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm𝐵)↑2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2))))
1911, 18imbi12d 343 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0 → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm𝐵)↑2))) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0 → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2)))))
20 ifhvhv0 30958 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
21 ifhvhv0 30958 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
2220, 21normpythi 31078 . 2 ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0 → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2)))
239, 19, 22dedth2h 4592 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  ifcif 4533  cfv 6556  (class class class)co 7426  0cc0 11160   + caddc 11163  2c2 12321  cexp 14083  chba 30855   + cva 30856   ·ih csp 30858  normcno 30859  0c0v 30860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238  ax-hfvadd 30936  ax-hv0cl 30939  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-sup 9487  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12613  df-uz 12877  df-rp 13031  df-seq 14024  df-exp 14084  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-hnorm 30904
This theorem is referenced by:  normpyc  31082  chscllem2  31574  hstnmoc  32159  hstpyth  32165
  Copyright terms: Public domain W3C validator