HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpyth Structured version   Visualization version   GIF version

Theorem normpyth 28341
Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
normpyth ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2))))

Proof of Theorem normpyth
StepHypRef Expression
1 oveq1 6802 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵))
21eqeq1d 2773 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih 𝐵) = 0 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0))
3 fvoveq1 6818 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
43oveq1d 6810 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2))
5 fveq2 6333 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm𝐴) = (norm‘if(𝐴 ∈ ℋ, 𝐴, 0)))
65oveq1d 6810 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm𝐴)↑2) = ((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2))
76oveq1d 6810 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm𝐴)↑2) + ((norm𝐵)↑2)) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm𝐵)↑2)))
84, 7eqeq12d 2786 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm𝐵)↑2))))
92, 8imbi12d 333 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2))) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0 → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm𝐵)↑2)))))
10 oveq2 6803 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
1110eqeq1d 2773 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))
12 oveq2 6803 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
1312fveq2d 6337 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
1413oveq1d 6810 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
15 fveq2 6333 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm𝐵) = (norm‘if(𝐵 ∈ ℋ, 𝐵, 0)))
1615oveq1d 6810 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm𝐵)↑2) = ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2))
1716oveq2d 6811 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm𝐵)↑2)) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2)))
1814, 17eqeq12d 2786 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm𝐵)↑2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2))))
1911, 18imbi12d 333 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0 → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm𝐵)↑2))) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0 → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2)))))
20 ifhvhv0 28218 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
21 ifhvhv0 28218 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
2220, 21normpythi 28338 . 2 ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0 → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) = (((norm‘if(𝐴 ∈ ℋ, 𝐴, 0))↑2) + ((norm‘if(𝐵 ∈ ℋ, 𝐵, 0))↑2)))
239, 19, 22dedth2h 4280 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  ifcif 4226  cfv 6030  (class class class)co 6795  0cc0 10141   + caddc 10144  2c2 11275  cexp 13066  chil 28115   + cva 28116   ·ih csp 28118  normcno 28119  0c0v 28120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219  ax-hfvadd 28196  ax-hv0cl 28199  ax-hvmul0 28206  ax-hfi 28275  ax-his1 28278  ax-his2 28279  ax-his3 28280  ax-his4 28281
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-er 7899  df-en 8113  df-dom 8114  df-sdom 8115  df-sup 8507  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-z 11584  df-uz 11893  df-rp 12035  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-hnorm 28164
This theorem is referenced by:  normpyc  28342  chscllem2  28836  hstnmoc  29421  hstpyth  29427
  Copyright terms: Public domain W3C validator