![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvnegdi | Structured version Visualization version GIF version |
Description: Distribution of negative over subtraction. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvnegdi | โข ((๐ด โ โ โง ๐ต โ โ) โ (-1 ยทโ (๐ด โโ ๐ต)) = (๐ต โโ ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7408 | . . . 4 โข (๐ด = if(๐ด โ โ, ๐ด, 0โ) โ (๐ด โโ ๐ต) = (if(๐ด โ โ, ๐ด, 0โ) โโ ๐ต)) | |
2 | 1 | oveq2d 7417 | . . 3 โข (๐ด = if(๐ด โ โ, ๐ด, 0โ) โ (-1 ยทโ (๐ด โโ ๐ต)) = (-1 ยทโ (if(๐ด โ โ, ๐ด, 0โ) โโ ๐ต))) |
3 | oveq2 7409 | . . 3 โข (๐ด = if(๐ด โ โ, ๐ด, 0โ) โ (๐ต โโ ๐ด) = (๐ต โโ if(๐ด โ โ, ๐ด, 0โ))) | |
4 | 2, 3 | eqeq12d 2740 | . 2 โข (๐ด = if(๐ด โ โ, ๐ด, 0โ) โ ((-1 ยทโ (๐ด โโ ๐ต)) = (๐ต โโ ๐ด) โ (-1 ยทโ (if(๐ด โ โ, ๐ด, 0โ) โโ ๐ต)) = (๐ต โโ if(๐ด โ โ, ๐ด, 0โ)))) |
5 | oveq2 7409 | . . . 4 โข (๐ต = if(๐ต โ โ, ๐ต, 0โ) โ (if(๐ด โ โ, ๐ด, 0โ) โโ ๐ต) = (if(๐ด โ โ, ๐ด, 0โ) โโ if(๐ต โ โ, ๐ต, 0โ))) | |
6 | 5 | oveq2d 7417 | . . 3 โข (๐ต = if(๐ต โ โ, ๐ต, 0โ) โ (-1 ยทโ (if(๐ด โ โ, ๐ด, 0โ) โโ ๐ต)) = (-1 ยทโ (if(๐ด โ โ, ๐ด, 0โ) โโ if(๐ต โ โ, ๐ต, 0โ)))) |
7 | oveq1 7408 | . . 3 โข (๐ต = if(๐ต โ โ, ๐ต, 0โ) โ (๐ต โโ if(๐ด โ โ, ๐ด, 0โ)) = (if(๐ต โ โ, ๐ต, 0โ) โโ if(๐ด โ โ, ๐ด, 0โ))) | |
8 | 6, 7 | eqeq12d 2740 | . 2 โข (๐ต = if(๐ต โ โ, ๐ต, 0โ) โ ((-1 ยทโ (if(๐ด โ โ, ๐ด, 0โ) โโ ๐ต)) = (๐ต โโ if(๐ด โ โ, ๐ด, 0โ)) โ (-1 ยทโ (if(๐ด โ โ, ๐ด, 0โ) โโ if(๐ต โ โ, ๐ต, 0โ))) = (if(๐ต โ โ, ๐ต, 0โ) โโ if(๐ด โ โ, ๐ด, 0โ)))) |
9 | ifhvhv0 30699 | . . 3 โข if(๐ด โ โ, ๐ด, 0โ) โ โ | |
10 | ifhvhv0 30699 | . . 3 โข if(๐ต โ โ, ๐ต, 0โ) โ โ | |
11 | 9, 10 | hvnegdii 30739 | . 2 โข (-1 ยทโ (if(๐ด โ โ, ๐ด, 0โ) โโ if(๐ต โ โ, ๐ต, 0โ))) = (if(๐ต โ โ, ๐ต, 0โ) โโ if(๐ด โ โ, ๐ด, 0โ)) |
12 | 4, 8, 11 | dedth2h 4579 | 1 โข ((๐ด โ โ โง ๐ต โ โ) โ (-1 ยทโ (๐ด โโ ๐ต)) = (๐ต โโ ๐ด)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1533 โ wcel 2098 ifcif 4520 (class class class)co 7401 1c1 11106 -cneg 11441 โchba 30596 ยทโ csm 30598 0โc0v 30601 โโ cmv 30602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-hvcom 30678 ax-hv0cl 30680 ax-hfvmul 30682 ax-hvmulid 30683 ax-hvmulass 30684 ax-hvdistr1 30685 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 df-neg 11443 df-hvsub 30648 |
This theorem is referenced by: hvsubcan2 30752 |
Copyright terms: Public domain | W3C validator |