![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvnegdi | Structured version Visualization version GIF version |
Description: Distribution of negative over subtraction. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvnegdi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6883 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) | |
2 | 1 | oveq2d 6892 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (-1 ·ℎ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵))) |
3 | oveq2 6884 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐵 −ℎ 𝐴) = (𝐵 −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) | |
4 | 2, 3 | eqeq12d 2812 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴) ↔ (-1 ·ℎ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = (𝐵 −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ)))) |
5 | oveq2 6884 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | oveq2d 6892 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (-1 ·ℎ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = (-1 ·ℎ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
7 | oveq1 6883 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐵 −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ))) | |
8 | 6, 7 | eqeq12d 2812 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((-1 ·ℎ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ 𝐵)) = (𝐵 −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) ↔ (-1 ·ℎ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ)))) |
9 | ifhvhv0 28396 | . . 3 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
10 | ifhvhv0 28396 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
11 | 9, 10 | hvnegdii 28436 | . 2 ⊢ (-1 ·ℎ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) −ℎ if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) |
12 | 4, 8, 11 | dedth2h 4332 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ifcif 4275 (class class class)co 6876 1c1 10223 -cneg 10555 ℋchba 28293 ·ℎ csm 28295 0ℎc0v 28298 −ℎ cmv 28299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-hvcom 28375 ax-hv0cl 28377 ax-hfvmul 28379 ax-hvmulid 28380 ax-hvmulass 28381 ax-hvdistr1 28382 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-po 5231 df-so 5232 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-ltxr 10366 df-sub 10556 df-neg 10557 df-hvsub 28345 |
This theorem is referenced by: hvsubcan2 28449 |
Copyright terms: Public domain | W3C validator |