| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > elspansn2 | Structured version Visualization version GIF version | ||
| Description: Membership in the span of a singleton. All members are collinear with the generating vector. (Contributed by NM, 5-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elspansn2 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ) → (𝐴 ∈ (span‘{𝐵}) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansn 31539 | . . . 4 ⊢ (𝐵 ∈ ℋ → (span‘{𝐵}) = (⊥‘(⊥‘{𝐵}))) | |
| 2 | 1 | eleq2d 2814 | . . 3 ⊢ (𝐵 ∈ ℋ → (𝐴 ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
| 3 | 2 | 3ad2ant2 1134 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ) → (𝐴 ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
| 4 | eleq1 2816 | . . . . . 6 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{𝐵})))) | |
| 5 | id 22 | . . . . . . 7 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → 𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) | |
| 6 | oveq1 7376 | . . . . . . . . 9 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵)) | |
| 7 | 6 | oveq1d 7384 | . . . . . . . 8 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) = ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵))) |
| 8 | 7 | oveq1d 7384 | . . . . . . 7 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) |
| 9 | 5, 8 | eqeq12d 2745 | . . . . . 6 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
| 10 | 4, 9 | bibi12d 345 | . . . . 5 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{𝐵})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)))) |
| 11 | 10 | imbi2d 340 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) ↔ (𝐵 ≠ 0ℎ → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{𝐵})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))))) |
| 12 | neeq1 2987 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐵 ≠ 0ℎ ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ≠ 0ℎ)) | |
| 13 | sneq 4595 | . . . . . . . . 9 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → {𝐵} = {if(𝐵 ∈ ℋ, 𝐵, 0ℎ)}) | |
| 14 | 13 | fveq2d 6844 | . . . . . . . 8 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (⊥‘{𝐵}) = (⊥‘{if(𝐵 ∈ ℋ, 𝐵, 0ℎ)})) |
| 15 | 14 | fveq2d 6844 | . . . . . . 7 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (⊥‘(⊥‘{𝐵})) = (⊥‘(⊥‘{if(𝐵 ∈ ℋ, 𝐵, 0ℎ)}))) |
| 16 | 15 | eleq2d 2814 | . . . . . 6 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{𝐵})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{if(𝐵 ∈ ℋ, 𝐵, 0ℎ)})))) |
| 17 | oveq2 7377 | . . . . . . . . 9 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
| 18 | oveq1 7376 | . . . . . . . . . 10 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐵 ·ih 𝐵) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih 𝐵)) | |
| 19 | oveq2 7377 | . . . . . . . . . 10 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih 𝐵) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
| 20 | 18, 19 | eqtrd 2764 | . . . . . . . . 9 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐵 ·ih 𝐵) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
| 21 | 17, 20 | oveq12d 7387 | . . . . . . . 8 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) = ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) / (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
| 22 | id 22 | . . . . . . . 8 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → 𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) | |
| 23 | 21, 22 | oveq12d 7387 | . . . . . . 7 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) / (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
| 24 | 23 | eqeq2d 2740 | . . . . . 6 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) / (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
| 25 | 16, 24 | bibi12d 345 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{𝐵})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{if(𝐵 ∈ ℋ, 𝐵, 0ℎ)})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) / (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
| 26 | 12, 25 | imbi12d 344 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((𝐵 ≠ 0ℎ → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{𝐵})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ≠ 0ℎ → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{if(𝐵 ∈ ℋ, 𝐵, 0ℎ)})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) / (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))))) |
| 27 | ifhvhv0 31002 | . . . . 5 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
| 28 | ifhvhv0 31002 | . . . . 5 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
| 29 | 27, 28 | h1de2bi 31534 | . . . 4 ⊢ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ≠ 0ℎ → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{if(𝐵 ∈ ℋ, 𝐵, 0ℎ)})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) / (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
| 30 | 11, 26, 29 | dedth2h 4544 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)))) |
| 31 | 30 | 3impia 1117 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
| 32 | 3, 31 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ) → (𝐴 ∈ (span‘{𝐵}) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ifcif 4484 {csn 4585 ‘cfv 6499 (class class class)co 7369 / cdiv 11813 ℋchba 30899 ·ℎ csm 30901 ·ih csp 30902 0ℎc0v 30904 ⊥cort 30910 spancspn 30912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9572 ax-cc 10366 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 ax-addf 11125 ax-mulf 11126 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvmulass 30987 ax-hvdistr1 30988 ax-hvdistr2 30989 ax-hvmul0 30990 ax-hfi 31059 ax-his1 31062 ax-his2 31063 ax-his3 31064 ax-his4 31065 ax-hcompl 31182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9870 df-acn 9873 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-q 12886 df-rp 12930 df-xneg 13050 df-xadd 13051 df-xmul 13052 df-ioo 13288 df-ico 13290 df-icc 13291 df-fz 13447 df-fzo 13594 df-fl 13732 df-seq 13945 df-exp 14005 df-hash 14274 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15431 df-rlim 15432 df-sum 15630 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17362 df-topn 17363 df-0g 17381 df-gsum 17382 df-topgen 17383 df-pt 17384 df-prds 17387 df-xrs 17442 df-qtop 17447 df-imas 17448 df-xps 17450 df-mre 17524 df-mrc 17525 df-acs 17527 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19232 df-cmn 19697 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-cn 23148 df-cnp 23149 df-lm 23150 df-haus 23236 df-tx 23483 df-hmeo 23676 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-xms 24242 df-ms 24243 df-tms 24244 df-cfil 25189 df-cau 25190 df-cmet 25191 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-vs 30579 df-nmcv 30580 df-ims 30581 df-dip 30681 df-ssp 30702 df-ph 30793 df-cbn 30843 df-hnorm 30948 df-hba 30949 df-hvsub 30951 df-hlim 30952 df-hcau 30953 df-sh 31187 df-ch 31201 df-oc 31232 df-ch0 31233 df-span 31289 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |