| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > elspansn2 | Structured version Visualization version GIF version | ||
| Description: Membership in the span of a singleton. All members are collinear with the generating vector. (Contributed by NM, 5-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elspansn2 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ) → (𝐴 ∈ (span‘{𝐵}) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansn 31550 | . . . 4 ⊢ (𝐵 ∈ ℋ → (span‘{𝐵}) = (⊥‘(⊥‘{𝐵}))) | |
| 2 | 1 | eleq2d 2819 | . . 3 ⊢ (𝐵 ∈ ℋ → (𝐴 ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
| 3 | 2 | 3ad2ant2 1134 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ) → (𝐴 ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
| 4 | eleq1 2821 | . . . . . 6 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{𝐵})))) | |
| 5 | id 22 | . . . . . . 7 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → 𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ)) | |
| 6 | oveq1 7362 | . . . . . . . . 9 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵)) | |
| 7 | 6 | oveq1d 7370 | . . . . . . . 8 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) = ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵))) |
| 8 | 7 | oveq1d 7370 | . . . . . . 7 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) |
| 9 | 5, 8 | eqeq12d 2749 | . . . . . 6 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
| 10 | 4, 9 | bibi12d 345 | . . . . 5 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{𝐵})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)))) |
| 11 | 10 | imbi2d 340 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) ↔ (𝐵 ≠ 0ℎ → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{𝐵})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))))) |
| 12 | neeq1 2992 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐵 ≠ 0ℎ ↔ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ≠ 0ℎ)) | |
| 13 | sneq 4587 | . . . . . . . . 9 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → {𝐵} = {if(𝐵 ∈ ℋ, 𝐵, 0ℎ)}) | |
| 14 | 13 | fveq2d 6835 | . . . . . . . 8 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (⊥‘{𝐵}) = (⊥‘{if(𝐵 ∈ ℋ, 𝐵, 0ℎ)})) |
| 15 | 14 | fveq2d 6835 | . . . . . . 7 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (⊥‘(⊥‘{𝐵})) = (⊥‘(⊥‘{if(𝐵 ∈ ℋ, 𝐵, 0ℎ)}))) |
| 16 | 15 | eleq2d 2819 | . . . . . 6 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{𝐵})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{if(𝐵 ∈ ℋ, 𝐵, 0ℎ)})))) |
| 17 | oveq2 7363 | . . . . . . . . 9 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
| 18 | oveq1 7362 | . . . . . . . . . 10 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐵 ·ih 𝐵) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih 𝐵)) | |
| 19 | oveq2 7363 | . . . . . . . . . 10 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih 𝐵) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
| 20 | 18, 19 | eqtrd 2768 | . . . . . . . . 9 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐵 ·ih 𝐵) = (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
| 21 | 17, 20 | oveq12d 7373 | . . . . . . . 8 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) = ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) / (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
| 22 | id 22 | . . . . . . . 8 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → 𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) | |
| 23 | 21, 22 | oveq12d 7373 | . . . . . . 7 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) / (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
| 24 | 23 | eqeq2d 2744 | . . . . . 6 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) / (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
| 25 | 16, 24 | bibi12d 345 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{𝐵})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{if(𝐵 ∈ ℋ, 𝐵, 0ℎ)})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) / (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
| 26 | 12, 25 | imbi12d 344 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((𝐵 ≠ 0ℎ → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{𝐵})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ≠ 0ℎ → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{if(𝐵 ∈ ℋ, 𝐵, 0ℎ)})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) / (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))))) |
| 27 | ifhvhv0 31013 | . . . . 5 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | |
| 28 | ifhvhv0 31013 | . . . . 5 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
| 29 | 27, 28 | h1de2bi 31545 | . . . 4 ⊢ (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ≠ 0ℎ → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ (⊥‘(⊥‘{if(𝐵 ∈ ℋ, 𝐵, 0ℎ)})) ↔ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) = (((if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) / (if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ·ih if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
| 30 | 11, 26, 29 | dedth2h 4536 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)))) |
| 31 | 30 | 3impia 1117 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
| 32 | 3, 31 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ) → (𝐴 ∈ (span‘{𝐵}) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ifcif 4476 {csn 4577 ‘cfv 6489 (class class class)co 7355 / cdiv 11784 ℋchba 30910 ·ℎ csm 30912 ·ih csp 30913 0ℎc0v 30915 ⊥cort 30921 spancspn 30923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cc 10336 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 ax-mulf 11096 ax-hilex 30990 ax-hfvadd 30991 ax-hvcom 30992 ax-hvass 30993 ax-hv0cl 30994 ax-hvaddid 30995 ax-hfvmul 30996 ax-hvmulid 30997 ax-hvmulass 30998 ax-hvdistr1 30999 ax-hvdistr2 31000 ax-hvmul0 31001 ax-hfi 31070 ax-his1 31073 ax-his2 31074 ax-his3 31075 ax-his4 31076 ax-hcompl 31193 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-omul 8399 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-fi 9305 df-sup 9336 df-inf 9337 df-oi 9406 df-card 9842 df-acn 9845 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-q 12857 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-ioo 13259 df-ico 13261 df-icc 13262 df-fz 13418 df-fzo 13565 df-fl 13706 df-seq 13919 df-exp 13979 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-clim 15405 df-rlim 15406 df-sum 15604 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-hom 17195 df-cco 17196 df-rest 17336 df-topn 17337 df-0g 17355 df-gsum 17356 df-topgen 17357 df-pt 17358 df-prds 17361 df-xrs 17416 df-qtop 17421 df-imas 17422 df-xps 17424 df-mre 17498 df-mrc 17499 df-acs 17501 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-submnd 18702 df-mulg 18991 df-cntz 19239 df-cmn 19704 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-fbas 21298 df-fg 21299 df-cnfld 21302 df-top 22819 df-topon 22836 df-topsp 22858 df-bases 22871 df-cld 22944 df-ntr 22945 df-cls 22946 df-nei 23023 df-cn 23152 df-cnp 23153 df-lm 23154 df-haus 23240 df-tx 23487 df-hmeo 23680 df-fil 23771 df-fm 23863 df-flim 23864 df-flf 23865 df-xms 24245 df-ms 24246 df-tms 24247 df-cfil 25192 df-cau 25193 df-cmet 25194 df-grpo 30484 df-gid 30485 df-ginv 30486 df-gdiv 30487 df-ablo 30536 df-vc 30550 df-nv 30583 df-va 30586 df-ba 30587 df-sm 30588 df-0v 30589 df-vs 30590 df-nmcv 30591 df-ims 30592 df-dip 30692 df-ssp 30713 df-ph 30804 df-cbn 30854 df-hnorm 30959 df-hba 30960 df-hvsub 30962 df-hlim 30963 df-hcau 30964 df-sh 31198 df-ch 31212 df-oc 31243 df-ch0 31244 df-span 31300 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |