| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjss2coi | Structured version Visualization version GIF version | ||
| Description: Subset relationship for projections. Theorem 4.5(i)<->(ii) of [Beran] p. 112. (Contributed by NM, 7-Oct-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjco.1 | ⊢ 𝐺 ∈ Cℋ |
| pjco.2 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| pjss2coi | ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjco.1 | . . . . . . 7 ⊢ 𝐺 ∈ Cℋ | |
| 2 | pjco.2 | . . . . . . 7 ⊢ 𝐻 ∈ Cℋ | |
| 3 | 1, 2 | pjcoi 32138 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥))) |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ) → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥))) |
| 5 | 2fveq3 6827 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘((projℎ‘𝐻)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)))) | |
| 6 | fveq2 6822 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((projℎ‘𝐺)‘𝑥) = ((projℎ‘𝐺)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) | |
| 7 | 5, 6 | eqeq12d 2747 | . . . . . . . 8 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘𝑥) ↔ ((projℎ‘𝐺)‘((projℎ‘𝐻)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) = ((projℎ‘𝐺)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)))) |
| 8 | 7 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((𝐺 ⊆ 𝐻 → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘𝑥)) ↔ (𝐺 ⊆ 𝐻 → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) = ((projℎ‘𝐺)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))))) |
| 9 | ifhvhv0 31002 | . . . . . . . 8 ⊢ if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ∈ ℋ | |
| 10 | 1, 9, 2 | pjss2i 31660 | . . . . . . 7 ⊢ (𝐺 ⊆ 𝐻 → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) = ((projℎ‘𝐺)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) |
| 11 | 8, 10 | dedth 4531 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝐺 ⊆ 𝐻 → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘𝑥))) |
| 12 | 11 | impcom 407 | . . . . 5 ⊢ ((𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ) → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘𝑥)) |
| 13 | 4, 12 | eqtrd 2766 | . . . 4 ⊢ ((𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ) → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘𝑥)) |
| 14 | 13 | ralrimiva 3124 | . . 3 ⊢ (𝐺 ⊆ 𝐻 → ∀𝑥 ∈ ℋ (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘𝑥)) |
| 15 | 1 | pjfi 31684 | . . . . 5 ⊢ (projℎ‘𝐺): ℋ⟶ ℋ |
| 16 | 2 | pjfi 31684 | . . . . 5 ⊢ (projℎ‘𝐻): ℋ⟶ ℋ |
| 17 | 15, 16 | hocofi 31746 | . . . 4 ⊢ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)): ℋ⟶ ℋ |
| 18 | 17, 15 | hoeqi 31741 | . . 3 ⊢ (∀𝑥 ∈ ℋ (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘𝑥) ↔ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) |
| 19 | 14, 18 | sylib 218 | . 2 ⊢ (𝐺 ⊆ 𝐻 → ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) |
| 20 | fveq1 6821 | . . . . . . . . . . . 12 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦) = ((projℎ‘𝐺)‘𝑦)) | |
| 21 | 20 | oveq2d 7362 | . . . . . . . . . . 11 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (𝑥 ·ih (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦)) = (𝑥 ·ih ((projℎ‘𝐺)‘𝑦))) |
| 22 | 21 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℋ ∧ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦)) = (𝑥 ·ih ((projℎ‘𝐺)‘𝑦))) |
| 23 | 2, 1 | pjadjcoi 32141 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦))) |
| 24 | 23 | adantlr 715 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℋ ∧ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) ∧ 𝑦 ∈ ℋ) → ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦))) |
| 25 | 1 | pjadji 31665 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((projℎ‘𝐺)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((projℎ‘𝐺)‘𝑦))) |
| 26 | 25 | adantlr 715 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℋ ∧ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) ∧ 𝑦 ∈ ℋ) → (((projℎ‘𝐺)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((projℎ‘𝐺)‘𝑦))) |
| 27 | 22, 24, 26 | 3eqtr4d 2776 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℋ ∧ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) ∧ 𝑦 ∈ ℋ) → ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦)) |
| 28 | 27 | exp31 419 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (𝑦 ∈ ℋ → ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦)))) |
| 29 | 28 | ralrimdv 3130 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → ∀𝑦 ∈ ℋ ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦))) |
| 30 | 2, 1 | pjcohcli 32140 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ∈ ℋ) |
| 31 | 1 | pjhcli 31398 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → ((projℎ‘𝐺)‘𝑥) ∈ ℋ) |
| 32 | hial2eq 31086 | . . . . . . . 8 ⊢ (((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ∈ ℋ ∧ ((projℎ‘𝐺)‘𝑥) ∈ ℋ) → (∀𝑦 ∈ ℋ ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦) ↔ (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥))) | |
| 33 | 30, 31, 32 | syl2anc 584 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (∀𝑦 ∈ ℋ ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦) ↔ (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥))) |
| 34 | 29, 33 | sylibd 239 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥))) |
| 35 | 34 | com12 32 | . . . . 5 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (𝑥 ∈ ℋ → (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥))) |
| 36 | 35 | ralrimiv 3123 | . . . 4 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → ∀𝑥 ∈ ℋ (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥)) |
| 37 | 16, 15 | hocofi 31746 | . . . . 5 ⊢ ((projℎ‘𝐻) ∘ (projℎ‘𝐺)): ℋ⟶ ℋ |
| 38 | 37, 15 | hoeqi 31741 | . . . 4 ⊢ (∀𝑥 ∈ ℋ (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥) ↔ ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) = (projℎ‘𝐺)) |
| 39 | 36, 38 | sylib 218 | . . 3 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) = (projℎ‘𝐺)) |
| 40 | 1, 2 | pjss1coi 32143 | . . 3 ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) = (projℎ‘𝐺)) |
| 41 | 39, 40 | sylibr 234 | . 2 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → 𝐺 ⊆ 𝐻) |
| 42 | 19, 41 | impbii 209 | 1 ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ifcif 4472 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 ℋchba 30899 ·ih csp 30902 0ℎc0v 30904 Cℋ cch 30909 projℎcpjh 30917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cc 10326 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvmulass 30987 ax-hvdistr1 30988 ax-hvdistr2 30989 ax-hvmul0 30990 ax-hfi 31059 ax-his1 31062 ax-his2 31063 ax-his3 31064 ax-his4 31065 ax-hcompl 31182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-cn 23142 df-cnp 23143 df-lm 23144 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cfil 25182 df-cau 25183 df-cmet 25184 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-vs 30579 df-nmcv 30580 df-ims 30581 df-dip 30681 df-ssp 30702 df-ph 30793 df-cbn 30843 df-hnorm 30948 df-hba 30949 df-hvsub 30951 df-hlim 30952 df-hcau 30953 df-sh 31187 df-ch 31201 df-oc 31232 df-ch0 31233 df-shs 31288 df-pjh 31375 |
| This theorem is referenced by: pjidmcoi 32157 pjin2i 32173 pjin3i 32174 |
| Copyright terms: Public domain | W3C validator |