| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjss2coi | Structured version Visualization version GIF version | ||
| Description: Subset relationship for projections. Theorem 4.5(i)<->(ii) of [Beran] p. 112. (Contributed by NM, 7-Oct-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjco.1 | ⊢ 𝐺 ∈ Cℋ |
| pjco.2 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| pjss2coi | ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjco.1 | . . . . . . 7 ⊢ 𝐺 ∈ Cℋ | |
| 2 | pjco.2 | . . . . . . 7 ⊢ 𝐻 ∈ Cℋ | |
| 3 | 1, 2 | pjcoi 32137 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥))) |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ) → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥))) |
| 5 | 2fveq3 6845 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘((projℎ‘𝐻)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)))) | |
| 6 | fveq2 6840 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((projℎ‘𝐺)‘𝑥) = ((projℎ‘𝐺)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) | |
| 7 | 5, 6 | eqeq12d 2745 | . . . . . . . 8 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘𝑥) ↔ ((projℎ‘𝐺)‘((projℎ‘𝐻)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) = ((projℎ‘𝐺)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)))) |
| 8 | 7 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((𝐺 ⊆ 𝐻 → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘𝑥)) ↔ (𝐺 ⊆ 𝐻 → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) = ((projℎ‘𝐺)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))))) |
| 9 | ifhvhv0 31001 | . . . . . . . 8 ⊢ if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ∈ ℋ | |
| 10 | 1, 9, 2 | pjss2i 31659 | . . . . . . 7 ⊢ (𝐺 ⊆ 𝐻 → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) = ((projℎ‘𝐺)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) |
| 11 | 8, 10 | dedth 4543 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝐺 ⊆ 𝐻 → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘𝑥))) |
| 12 | 11 | impcom 407 | . . . . 5 ⊢ ((𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ) → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘𝑥)) |
| 13 | 4, 12 | eqtrd 2764 | . . . 4 ⊢ ((𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ) → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘𝑥)) |
| 14 | 13 | ralrimiva 3125 | . . 3 ⊢ (𝐺 ⊆ 𝐻 → ∀𝑥 ∈ ℋ (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘𝑥)) |
| 15 | 1 | pjfi 31683 | . . . . 5 ⊢ (projℎ‘𝐺): ℋ⟶ ℋ |
| 16 | 2 | pjfi 31683 | . . . . 5 ⊢ (projℎ‘𝐻): ℋ⟶ ℋ |
| 17 | 15, 16 | hocofi 31745 | . . . 4 ⊢ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)): ℋ⟶ ℋ |
| 18 | 17, 15 | hoeqi 31740 | . . 3 ⊢ (∀𝑥 ∈ ℋ (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘𝑥) ↔ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) |
| 19 | 14, 18 | sylib 218 | . 2 ⊢ (𝐺 ⊆ 𝐻 → ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) |
| 20 | fveq1 6839 | . . . . . . . . . . . 12 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦) = ((projℎ‘𝐺)‘𝑦)) | |
| 21 | 20 | oveq2d 7385 | . . . . . . . . . . 11 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (𝑥 ·ih (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦)) = (𝑥 ·ih ((projℎ‘𝐺)‘𝑦))) |
| 22 | 21 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℋ ∧ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦)) = (𝑥 ·ih ((projℎ‘𝐺)‘𝑦))) |
| 23 | 2, 1 | pjadjcoi 32140 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦))) |
| 24 | 23 | adantlr 715 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℋ ∧ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) ∧ 𝑦 ∈ ℋ) → ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦))) |
| 25 | 1 | pjadji 31664 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((projℎ‘𝐺)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((projℎ‘𝐺)‘𝑦))) |
| 26 | 25 | adantlr 715 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℋ ∧ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) ∧ 𝑦 ∈ ℋ) → (((projℎ‘𝐺)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((projℎ‘𝐺)‘𝑦))) |
| 27 | 22, 24, 26 | 3eqtr4d 2774 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℋ ∧ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) ∧ 𝑦 ∈ ℋ) → ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦)) |
| 28 | 27 | exp31 419 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (𝑦 ∈ ℋ → ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦)))) |
| 29 | 28 | ralrimdv 3131 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → ∀𝑦 ∈ ℋ ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦))) |
| 30 | 2, 1 | pjcohcli 32139 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ∈ ℋ) |
| 31 | 1 | pjhcli 31397 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → ((projℎ‘𝐺)‘𝑥) ∈ ℋ) |
| 32 | hial2eq 31085 | . . . . . . . 8 ⊢ (((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ∈ ℋ ∧ ((projℎ‘𝐺)‘𝑥) ∈ ℋ) → (∀𝑦 ∈ ℋ ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦) ↔ (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥))) | |
| 33 | 30, 31, 32 | syl2anc 584 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (∀𝑦 ∈ ℋ ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦) ↔ (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥))) |
| 34 | 29, 33 | sylibd 239 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥))) |
| 35 | 34 | com12 32 | . . . . 5 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (𝑥 ∈ ℋ → (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥))) |
| 36 | 35 | ralrimiv 3124 | . . . 4 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → ∀𝑥 ∈ ℋ (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥)) |
| 37 | 16, 15 | hocofi 31745 | . . . . 5 ⊢ ((projℎ‘𝐻) ∘ (projℎ‘𝐺)): ℋ⟶ ℋ |
| 38 | 37, 15 | hoeqi 31740 | . . . 4 ⊢ (∀𝑥 ∈ ℋ (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥) ↔ ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) = (projℎ‘𝐺)) |
| 39 | 36, 38 | sylib 218 | . . 3 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) = (projℎ‘𝐺)) |
| 40 | 1, 2 | pjss1coi 32142 | . . 3 ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) = (projℎ‘𝐺)) |
| 41 | 39, 40 | sylibr 234 | . 2 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → 𝐺 ⊆ 𝐻) |
| 42 | 19, 41 | impbii 209 | 1 ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ifcif 4484 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 ℋchba 30898 ·ih csp 30901 0ℎc0v 30903 Cℋ cch 30908 projℎcpjh 30916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cc 10364 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 ax-hilex 30978 ax-hfvadd 30979 ax-hvcom 30980 ax-hvass 30981 ax-hv0cl 30982 ax-hvaddid 30983 ax-hfvmul 30984 ax-hvmulid 30985 ax-hvmulass 30986 ax-hvdistr1 30987 ax-hvdistr2 30988 ax-hvmul0 30989 ax-hfi 31058 ax-his1 31061 ax-his2 31062 ax-his3 31063 ax-his4 31064 ax-hcompl 31181 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-acn 9871 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-sum 15629 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-cn 23147 df-cnp 23148 df-lm 23149 df-haus 23235 df-tx 23482 df-hmeo 23675 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-xms 24241 df-ms 24242 df-tms 24243 df-cfil 25188 df-cau 25189 df-cmet 25190 df-grpo 30472 df-gid 30473 df-ginv 30474 df-gdiv 30475 df-ablo 30524 df-vc 30538 df-nv 30571 df-va 30574 df-ba 30575 df-sm 30576 df-0v 30577 df-vs 30578 df-nmcv 30579 df-ims 30580 df-dip 30680 df-ssp 30701 df-ph 30792 df-cbn 30842 df-hnorm 30947 df-hba 30948 df-hvsub 30950 df-hlim 30951 df-hcau 30952 df-sh 31186 df-ch 31200 df-oc 31231 df-ch0 31232 df-shs 31287 df-pjh 31374 |
| This theorem is referenced by: pjidmcoi 32156 pjin2i 32172 pjin3i 32173 |
| Copyright terms: Public domain | W3C validator |