![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjss2coi | Structured version Visualization version GIF version |
Description: Subset relationship for projections. Theorem 4.5(i)<->(ii) of [Beran] p. 112. (Contributed by NM, 7-Oct-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjco.1 | ⊢ 𝐺 ∈ Cℋ |
pjco.2 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
pjss2coi | ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjco.1 | . . . . . . 7 ⊢ 𝐺 ∈ Cℋ | |
2 | pjco.2 | . . . . . . 7 ⊢ 𝐻 ∈ Cℋ | |
3 | 1, 2 | pjcoi 29710 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥))) |
4 | 3 | adantl 474 | . . . . 5 ⊢ ((𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ) → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥))) |
5 | 2fveq3 6502 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘((projℎ‘𝐻)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)))) | |
6 | fveq2 6497 | . . . . . . . . 9 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((projℎ‘𝐺)‘𝑥) = ((projℎ‘𝐺)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) | |
7 | 5, 6 | eqeq12d 2790 | . . . . . . . 8 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → (((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘𝑥) ↔ ((projℎ‘𝐺)‘((projℎ‘𝐻)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) = ((projℎ‘𝐺)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ)))) |
8 | 7 | imbi2d 333 | . . . . . . 7 ⊢ (𝑥 = if(𝑥 ∈ ℋ, 𝑥, 0ℎ) → ((𝐺 ⊆ 𝐻 → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘𝑥)) ↔ (𝐺 ⊆ 𝐻 → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) = ((projℎ‘𝐺)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))))) |
9 | ifhvhv0 28572 | . . . . . . . 8 ⊢ if(𝑥 ∈ ℋ, 𝑥, 0ℎ) ∈ ℋ | |
10 | 1, 9, 2 | pjss2i 29232 | . . . . . . 7 ⊢ (𝐺 ⊆ 𝐻 → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) = ((projℎ‘𝐺)‘if(𝑥 ∈ ℋ, 𝑥, 0ℎ))) |
11 | 8, 10 | dedth 4404 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝐺 ⊆ 𝐻 → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘𝑥))) |
12 | 11 | impcom 399 | . . . . 5 ⊢ ((𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ) → ((projℎ‘𝐺)‘((projℎ‘𝐻)‘𝑥)) = ((projℎ‘𝐺)‘𝑥)) |
13 | 4, 12 | eqtrd 2811 | . . . 4 ⊢ ((𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ) → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘𝑥)) |
14 | 13 | ralrimiva 3129 | . . 3 ⊢ (𝐺 ⊆ 𝐻 → ∀𝑥 ∈ ℋ (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘𝑥)) |
15 | 1 | pjfi 29256 | . . . . 5 ⊢ (projℎ‘𝐺): ℋ⟶ ℋ |
16 | 2 | pjfi 29256 | . . . . 5 ⊢ (projℎ‘𝐻): ℋ⟶ ℋ |
17 | 15, 16 | hocofi 29318 | . . . 4 ⊢ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)): ℋ⟶ ℋ |
18 | 17, 15 | hoeqi 29313 | . . 3 ⊢ (∀𝑥 ∈ ℋ (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑥) = ((projℎ‘𝐺)‘𝑥) ↔ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) |
19 | 14, 18 | sylib 210 | . 2 ⊢ (𝐺 ⊆ 𝐻 → ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) |
20 | fveq1 6496 | . . . . . . . . . . . 12 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦) = ((projℎ‘𝐺)‘𝑦)) | |
21 | 20 | oveq2d 6990 | . . . . . . . . . . 11 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (𝑥 ·ih (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦)) = (𝑥 ·ih ((projℎ‘𝐺)‘𝑦))) |
22 | 21 | ad2antlr 714 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℋ ∧ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦)) = (𝑥 ·ih ((projℎ‘𝐺)‘𝑦))) |
23 | 2, 1 | pjadjcoi 29713 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦))) |
24 | 23 | adantlr 702 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℋ ∧ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) ∧ 𝑦 ∈ ℋ) → ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝑦))) |
25 | 1 | pjadji 29237 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((projℎ‘𝐺)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((projℎ‘𝐺)‘𝑦))) |
26 | 25 | adantlr 702 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℋ ∧ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) ∧ 𝑦 ∈ ℋ) → (((projℎ‘𝐺)‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((projℎ‘𝐺)‘𝑦))) |
27 | 22, 24, 26 | 3eqtr4d 2821 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℋ ∧ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) ∧ 𝑦 ∈ ℋ) → ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦)) |
28 | 27 | exp31 412 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (𝑦 ∈ ℋ → ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦)))) |
29 | 28 | ralrimdv 3135 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → ∀𝑦 ∈ ℋ ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦))) |
30 | 2, 1 | pjcohcli 29712 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ∈ ℋ) |
31 | 1 | pjhcli 28970 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → ((projℎ‘𝐺)‘𝑥) ∈ ℋ) |
32 | hial2eq 28656 | . . . . . . . 8 ⊢ (((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ∈ ℋ ∧ ((projℎ‘𝐺)‘𝑥) ∈ ℋ) → (∀𝑦 ∈ ℋ ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦) ↔ (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥))) | |
33 | 30, 31, 32 | syl2anc 576 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (∀𝑦 ∈ ℋ ((((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) ·ih 𝑦) = (((projℎ‘𝐺)‘𝑥) ·ih 𝑦) ↔ (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥))) |
34 | 29, 33 | sylibd 231 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥))) |
35 | 34 | com12 32 | . . . . 5 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → (𝑥 ∈ ℋ → (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥))) |
36 | 35 | ralrimiv 3128 | . . . 4 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → ∀𝑥 ∈ ℋ (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥)) |
37 | 16, 15 | hocofi 29318 | . . . . 5 ⊢ ((projℎ‘𝐻) ∘ (projℎ‘𝐺)): ℋ⟶ ℋ |
38 | 37, 15 | hoeqi 29313 | . . . 4 ⊢ (∀𝑥 ∈ ℋ (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝑥) = ((projℎ‘𝐺)‘𝑥) ↔ ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) = (projℎ‘𝐺)) |
39 | 36, 38 | sylib 210 | . . 3 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) = (projℎ‘𝐺)) |
40 | 1, 2 | pjss1coi 29715 | . . 3 ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) = (projℎ‘𝐺)) |
41 | 39, 40 | sylibr 226 | . 2 ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺) → 𝐺 ⊆ 𝐻) |
42 | 19, 41 | impbii 201 | 1 ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ∀wral 3085 ⊆ wss 3828 ifcif 4348 ∘ ccom 5408 ‘cfv 6186 (class class class)co 6974 ℋchba 28469 ·ih csp 28472 0ℎc0v 28474 Cℋ cch 28479 projℎcpjh 28487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2747 ax-rep 5047 ax-sep 5058 ax-nul 5065 ax-pow 5117 ax-pr 5184 ax-un 7277 ax-inf2 8894 ax-cc 9651 ax-cnex 10387 ax-resscn 10388 ax-1cn 10389 ax-icn 10390 ax-addcl 10391 ax-addrcl 10392 ax-mulcl 10393 ax-mulrcl 10394 ax-mulcom 10395 ax-addass 10396 ax-mulass 10397 ax-distr 10398 ax-i2m1 10399 ax-1ne0 10400 ax-1rid 10401 ax-rnegex 10402 ax-rrecex 10403 ax-cnre 10404 ax-pre-lttri 10405 ax-pre-lttrn 10406 ax-pre-ltadd 10407 ax-pre-mulgt0 10408 ax-pre-sup 10409 ax-addf 10410 ax-mulf 10411 ax-hilex 28549 ax-hfvadd 28550 ax-hvcom 28551 ax-hvass 28552 ax-hv0cl 28553 ax-hvaddid 28554 ax-hfvmul 28555 ax-hvmulid 28556 ax-hvmulass 28557 ax-hvdistr1 28558 ax-hvdistr2 28559 ax-hvmul0 28560 ax-hfi 28629 ax-his1 28632 ax-his2 28633 ax-his3 28634 ax-his4 28635 ax-hcompl 28752 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ne 2965 df-nel 3071 df-ral 3090 df-rex 3091 df-reu 3092 df-rmo 3093 df-rab 3094 df-v 3414 df-sbc 3681 df-csb 3786 df-dif 3831 df-un 3833 df-in 3835 df-ss 3842 df-pss 3844 df-nul 4178 df-if 4349 df-pw 4422 df-sn 4440 df-pr 4442 df-tp 4444 df-op 4446 df-uni 4711 df-int 4748 df-iun 4792 df-iin 4793 df-br 4928 df-opab 4990 df-mpt 5007 df-tr 5029 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-isom 6195 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-of 7225 df-om 7395 df-1st 7498 df-2nd 7499 df-supp 7631 df-wrecs 7747 df-recs 7809 df-rdg 7847 df-1o 7901 df-2o 7902 df-oadd 7905 df-omul 7906 df-er 8085 df-map 8204 df-pm 8205 df-ixp 8256 df-en 8303 df-dom 8304 df-sdom 8305 df-fin 8306 df-fsupp 8625 df-fi 8666 df-sup 8697 df-inf 8698 df-oi 8765 df-card 9158 df-acn 9161 df-cda 9384 df-pnf 10472 df-mnf 10473 df-xr 10474 df-ltxr 10475 df-le 10476 df-sub 10668 df-neg 10669 df-div 11095 df-nn 11436 df-2 11500 df-3 11501 df-4 11502 df-5 11503 df-6 11504 df-7 11505 df-8 11506 df-9 11507 df-n0 11705 df-z 11791 df-dec 11909 df-uz 12056 df-q 12160 df-rp 12202 df-xneg 12321 df-xadd 12322 df-xmul 12323 df-ioo 12555 df-ico 12557 df-icc 12558 df-fz 12706 df-fzo 12847 df-fl 12974 df-seq 13182 df-exp 13242 df-hash 13503 df-cj 14313 df-re 14314 df-im 14315 df-sqrt 14449 df-abs 14450 df-clim 14700 df-rlim 14701 df-sum 14898 df-struct 16335 df-ndx 16336 df-slot 16337 df-base 16339 df-sets 16340 df-ress 16341 df-plusg 16428 df-mulr 16429 df-starv 16430 df-sca 16431 df-vsca 16432 df-ip 16433 df-tset 16434 df-ple 16435 df-ds 16437 df-unif 16438 df-hom 16439 df-cco 16440 df-rest 16546 df-topn 16547 df-0g 16565 df-gsum 16566 df-topgen 16567 df-pt 16568 df-prds 16571 df-xrs 16625 df-qtop 16630 df-imas 16631 df-xps 16633 df-mre 16709 df-mrc 16710 df-acs 16712 df-mgm 17704 df-sgrp 17746 df-mnd 17757 df-submnd 17798 df-mulg 18006 df-cntz 18212 df-cmn 18662 df-psmet 20233 df-xmet 20234 df-met 20235 df-bl 20236 df-mopn 20237 df-fbas 20238 df-fg 20239 df-cnfld 20242 df-top 21200 df-topon 21217 df-topsp 21239 df-bases 21252 df-cld 21325 df-ntr 21326 df-cls 21327 df-nei 21404 df-cn 21533 df-cnp 21534 df-lm 21535 df-haus 21621 df-tx 21868 df-hmeo 22061 df-fil 22152 df-fm 22244 df-flim 22245 df-flf 22246 df-xms 22627 df-ms 22628 df-tms 22629 df-cfil 23555 df-cau 23556 df-cmet 23557 df-grpo 28041 df-gid 28042 df-ginv 28043 df-gdiv 28044 df-ablo 28093 df-vc 28107 df-nv 28140 df-va 28143 df-ba 28144 df-sm 28145 df-0v 28146 df-vs 28147 df-nmcv 28148 df-ims 28149 df-dip 28249 df-ssp 28270 df-ph 28361 df-cbn 28412 df-hnorm 28518 df-hba 28519 df-hvsub 28521 df-hlim 28522 df-hcau 28523 df-sh 28757 df-ch 28771 df-oc 28802 df-ch0 28803 df-shs 28860 df-pjh 28947 |
This theorem is referenced by: pjidmcoi 29729 pjin2i 29745 pjin3i 29746 |
Copyright terms: Public domain | W3C validator |