| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemrval | Structured version Visualization version GIF version | ||
| Description: Value of 𝑅. (Contributed by Thierry Arnoux, 14-Apr-2017.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
| Ref | Expression |
|---|---|
| ballotlemrval | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6831 | . . 3 ⊢ (𝑑 = 𝐶 → (𝑆‘𝑑) = (𝑆‘𝐶)) | |
| 2 | id 22 | . . 3 ⊢ (𝑑 = 𝐶 → 𝑑 = 𝐶) | |
| 3 | 1, 2 | imaeq12d 6017 | . 2 ⊢ (𝑑 = 𝐶 → ((𝑆‘𝑑) “ 𝑑) = ((𝑆‘𝐶) “ 𝐶)) |
| 4 | ballotth.r | . . 3 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
| 5 | fveq2 6831 | . . . . 5 ⊢ (𝑐 = 𝑑 → (𝑆‘𝑐) = (𝑆‘𝑑)) | |
| 6 | id 22 | . . . . 5 ⊢ (𝑐 = 𝑑 → 𝑐 = 𝑑) | |
| 7 | 5, 6 | imaeq12d 6017 | . . . 4 ⊢ (𝑐 = 𝑑 → ((𝑆‘𝑐) “ 𝑐) = ((𝑆‘𝑑) “ 𝑑)) |
| 8 | 7 | cbvmptv 5199 | . . 3 ⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) |
| 9 | 4, 8 | eqtri 2756 | . 2 ⊢ 𝑅 = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) |
| 10 | fvex 6844 | . . 3 ⊢ (𝑆‘𝐶) ∈ V | |
| 11 | imaexg 7852 | . . 3 ⊢ ((𝑆‘𝐶) ∈ V → ((𝑆‘𝐶) “ 𝐶) ∈ V) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝑆‘𝐶) “ 𝐶) ∈ V |
| 13 | 3, 9, 12 | fvmpt 6938 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 Vcvv 3437 ∖ cdif 3895 ∩ cin 3897 ifcif 4476 𝒫 cpw 4551 class class class wbr 5095 ↦ cmpt 5176 “ cima 5624 ‘cfv 6489 (class class class)co 7355 infcinf 9336 ℝcr 11016 0cc0 11017 1c1 11018 + caddc 11020 < clt 11157 ≤ cle 11158 − cmin 11355 / cdiv 11785 ℕcn 12136 ℤcz 12479 ...cfz 13414 ♯chash 14244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fv 6497 |
| This theorem is referenced by: ballotlemscr 34604 ballotlemrv 34605 ballotlemro 34608 ballotlemrinv0 34618 |
| Copyright terms: Public domain | W3C validator |