Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemrval Structured version   Visualization version   GIF version

Theorem ballotlemrval 34499
Description: Value of 𝑅. (Contributed by Thierry Arnoux, 14-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlemrval (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemrval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . 3 (𝑑 = 𝐶 → (𝑆𝑑) = (𝑆𝐶))
2 id 22 . . 3 (𝑑 = 𝐶𝑑 = 𝐶)
31, 2imaeq12d 6081 . 2 (𝑑 = 𝐶 → ((𝑆𝑑) “ 𝑑) = ((𝑆𝐶) “ 𝐶))
4 ballotth.r . . 3 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
5 fveq2 6907 . . . . 5 (𝑐 = 𝑑 → (𝑆𝑐) = (𝑆𝑑))
6 id 22 . . . . 5 (𝑐 = 𝑑𝑐 = 𝑑)
75, 6imaeq12d 6081 . . . 4 (𝑐 = 𝑑 → ((𝑆𝑐) “ 𝑐) = ((𝑆𝑑) “ 𝑑))
87cbvmptv 5261 . . 3 (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂𝐸) ↦ ((𝑆𝑑) “ 𝑑))
94, 8eqtri 2763 . 2 𝑅 = (𝑑 ∈ (𝑂𝐸) ↦ ((𝑆𝑑) “ 𝑑))
10 fvex 6920 . . 3 (𝑆𝐶) ∈ V
11 imaexg 7936 . . 3 ((𝑆𝐶) ∈ V → ((𝑆𝐶) “ 𝐶) ∈ V)
1210, 11ax-mp 5 . 2 ((𝑆𝐶) “ 𝐶) ∈ V
133, 9, 12fvmpt 7016 1 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478  cdif 3960  cin 3962  ifcif 4531  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231  cima 5692  cfv 6563  (class class class)co 7431  infcinf 9479  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  cz 12611  ...cfz 13544  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571
This theorem is referenced by:  ballotlemscr  34500  ballotlemrv  34501  ballotlemro  34504  ballotlemrinv0  34514
  Copyright terms: Public domain W3C validator