Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemrval Structured version   Visualization version   GIF version

Theorem ballotlemrval 32493
Description: Value of 𝑅. (Contributed by Thierry Arnoux, 14-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlemrval (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemrval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6783 . . 3 (𝑑 = 𝐶 → (𝑆𝑑) = (𝑆𝐶))
2 id 22 . . 3 (𝑑 = 𝐶𝑑 = 𝐶)
31, 2imaeq12d 5973 . 2 (𝑑 = 𝐶 → ((𝑆𝑑) “ 𝑑) = ((𝑆𝐶) “ 𝐶))
4 ballotth.r . . 3 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
5 fveq2 6783 . . . . 5 (𝑐 = 𝑑 → (𝑆𝑐) = (𝑆𝑑))
6 id 22 . . . . 5 (𝑐 = 𝑑𝑐 = 𝑑)
75, 6imaeq12d 5973 . . . 4 (𝑐 = 𝑑 → ((𝑆𝑐) “ 𝑐) = ((𝑆𝑑) “ 𝑑))
87cbvmptv 5188 . . 3 (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂𝐸) ↦ ((𝑆𝑑) “ 𝑑))
94, 8eqtri 2767 . 2 𝑅 = (𝑑 ∈ (𝑂𝐸) ↦ ((𝑆𝑑) “ 𝑑))
10 fvex 6796 . . 3 (𝑆𝐶) ∈ V
11 imaexg 7771 . . 3 ((𝑆𝐶) ∈ V → ((𝑆𝐶) “ 𝐶) ∈ V)
1210, 11ax-mp 5 . 2 ((𝑆𝐶) “ 𝐶) ∈ V
133, 9, 12fvmpt 6884 1 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3065  {crab 3069  Vcvv 3433  cdif 3885  cin 3887  ifcif 4460  𝒫 cpw 4534   class class class wbr 5075  cmpt 5158  cima 5593  cfv 6437  (class class class)co 7284  infcinf 9209  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   < clt 11018  cle 11019  cmin 11214   / cdiv 11641  cn 11982  cz 12328  ...cfz 13248  chash 14053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pr 5353  ax-un 7597
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3435  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fv 6445
This theorem is referenced by:  ballotlemscr  32494  ballotlemrv  32495  ballotlemro  32498  ballotlemrinv0  32508
  Copyright terms: Public domain W3C validator