| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemrval | Structured version Visualization version GIF version | ||
| Description: Value of 𝑅. (Contributed by Thierry Arnoux, 14-Apr-2017.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
| Ref | Expression |
|---|---|
| ballotlemrval | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6817 | . . 3 ⊢ (𝑑 = 𝐶 → (𝑆‘𝑑) = (𝑆‘𝐶)) | |
| 2 | id 22 | . . 3 ⊢ (𝑑 = 𝐶 → 𝑑 = 𝐶) | |
| 3 | 1, 2 | imaeq12d 6005 | . 2 ⊢ (𝑑 = 𝐶 → ((𝑆‘𝑑) “ 𝑑) = ((𝑆‘𝐶) “ 𝐶)) |
| 4 | ballotth.r | . . 3 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
| 5 | fveq2 6817 | . . . . 5 ⊢ (𝑐 = 𝑑 → (𝑆‘𝑐) = (𝑆‘𝑑)) | |
| 6 | id 22 | . . . . 5 ⊢ (𝑐 = 𝑑 → 𝑐 = 𝑑) | |
| 7 | 5, 6 | imaeq12d 6005 | . . . 4 ⊢ (𝑐 = 𝑑 → ((𝑆‘𝑐) “ 𝑐) = ((𝑆‘𝑑) “ 𝑑)) |
| 8 | 7 | cbvmptv 5190 | . . 3 ⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) |
| 9 | 4, 8 | eqtri 2754 | . 2 ⊢ 𝑅 = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) |
| 10 | fvex 6830 | . . 3 ⊢ (𝑆‘𝐶) ∈ V | |
| 11 | imaexg 7838 | . . 3 ⊢ ((𝑆‘𝐶) ∈ V → ((𝑆‘𝐶) “ 𝐶) ∈ V) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝑆‘𝐶) “ 𝐶) ∈ V |
| 13 | 3, 9, 12 | fvmpt 6924 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ∖ cdif 3894 ∩ cin 3896 ifcif 4470 𝒫 cpw 4545 class class class wbr 5086 ↦ cmpt 5167 “ cima 5614 ‘cfv 6476 (class class class)co 7341 infcinf 9320 ℝcr 11000 0cc0 11001 1c1 11002 + caddc 11004 < clt 11141 ≤ cle 11142 − cmin 11339 / cdiv 11769 ℕcn 12120 ℤcz 12463 ...cfz 13402 ♯chash 14232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fv 6484 |
| This theorem is referenced by: ballotlemscr 34524 ballotlemrv 34525 ballotlemro 34528 ballotlemrinv0 34538 |
| Copyright terms: Public domain | W3C validator |