![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemrval | Structured version Visualization version GIF version |
Description: Value of 𝑅. (Contributed by Thierry Arnoux, 14-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlemrval | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . 3 ⊢ (𝑑 = 𝐶 → (𝑆‘𝑑) = (𝑆‘𝐶)) | |
2 | id 22 | . . 3 ⊢ (𝑑 = 𝐶 → 𝑑 = 𝐶) | |
3 | 1, 2 | imaeq12d 6090 | . 2 ⊢ (𝑑 = 𝐶 → ((𝑆‘𝑑) “ 𝑑) = ((𝑆‘𝐶) “ 𝐶)) |
4 | ballotth.r | . . 3 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
5 | fveq2 6920 | . . . . 5 ⊢ (𝑐 = 𝑑 → (𝑆‘𝑐) = (𝑆‘𝑑)) | |
6 | id 22 | . . . . 5 ⊢ (𝑐 = 𝑑 → 𝑐 = 𝑑) | |
7 | 5, 6 | imaeq12d 6090 | . . . 4 ⊢ (𝑐 = 𝑑 → ((𝑆‘𝑐) “ 𝑐) = ((𝑆‘𝑑) “ 𝑑)) |
8 | 7 | cbvmptv 5279 | . . 3 ⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) |
9 | 4, 8 | eqtri 2768 | . 2 ⊢ 𝑅 = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) |
10 | fvex 6933 | . . 3 ⊢ (𝑆‘𝐶) ∈ V | |
11 | imaexg 7953 | . . 3 ⊢ ((𝑆‘𝐶) ∈ V → ((𝑆‘𝐶) “ 𝐶) ∈ V) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝑆‘𝐶) “ 𝐶) ∈ V |
13 | 3, 9, 12 | fvmpt 7029 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 ∖ cdif 3973 ∩ cin 3975 ifcif 4548 𝒫 cpw 4622 class class class wbr 5166 ↦ cmpt 5249 “ cima 5703 ‘cfv 6573 (class class class)co 7448 infcinf 9510 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 − cmin 11520 / cdiv 11947 ℕcn 12293 ℤcz 12639 ...cfz 13567 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: ballotlemscr 34483 ballotlemrv 34484 ballotlemro 34487 ballotlemrinv0 34497 |
Copyright terms: Public domain | W3C validator |