Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemrval | Structured version Visualization version GIF version |
Description: Value of 𝑅. (Contributed by Thierry Arnoux, 14-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlemrval | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6783 | . . 3 ⊢ (𝑑 = 𝐶 → (𝑆‘𝑑) = (𝑆‘𝐶)) | |
2 | id 22 | . . 3 ⊢ (𝑑 = 𝐶 → 𝑑 = 𝐶) | |
3 | 1, 2 | imaeq12d 5973 | . 2 ⊢ (𝑑 = 𝐶 → ((𝑆‘𝑑) “ 𝑑) = ((𝑆‘𝐶) “ 𝐶)) |
4 | ballotth.r | . . 3 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
5 | fveq2 6783 | . . . . 5 ⊢ (𝑐 = 𝑑 → (𝑆‘𝑐) = (𝑆‘𝑑)) | |
6 | id 22 | . . . . 5 ⊢ (𝑐 = 𝑑 → 𝑐 = 𝑑) | |
7 | 5, 6 | imaeq12d 5973 | . . . 4 ⊢ (𝑐 = 𝑑 → ((𝑆‘𝑐) “ 𝑐) = ((𝑆‘𝑑) “ 𝑑)) |
8 | 7 | cbvmptv 5188 | . . 3 ⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) |
9 | 4, 8 | eqtri 2767 | . 2 ⊢ 𝑅 = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) |
10 | fvex 6796 | . . 3 ⊢ (𝑆‘𝐶) ∈ V | |
11 | imaexg 7771 | . . 3 ⊢ ((𝑆‘𝐶) ∈ V → ((𝑆‘𝐶) “ 𝐶) ∈ V) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝑆‘𝐶) “ 𝐶) ∈ V |
13 | 3, 9, 12 | fvmpt 6884 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3065 {crab 3069 Vcvv 3433 ∖ cdif 3885 ∩ cin 3887 ifcif 4460 𝒫 cpw 4534 class class class wbr 5075 ↦ cmpt 5158 “ cima 5593 ‘cfv 6437 (class class class)co 7284 infcinf 9209 ℝcr 10879 0cc0 10880 1c1 10881 + caddc 10883 < clt 11018 ≤ cle 11019 − cmin 11214 / cdiv 11641 ℕcn 11982 ℤcz 12328 ...cfz 13248 ♯chash 14053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fv 6445 |
This theorem is referenced by: ballotlemscr 32494 ballotlemrv 32495 ballotlemro 32498 ballotlemrinv0 32508 |
Copyright terms: Public domain | W3C validator |