| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > initoeu1w | Structured version Visualization version GIF version | ||
| Description: Initial objects are essentially unique (weak form), i.e. if A and B are initial objects, then A and B are isomorphic. Proposition 7.3 (1) of [Adamek] p. 102. (Contributed by AV, 6-Apr-2020.) |
| Ref | Expression |
|---|---|
| initoeu1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| initoeu1.a | ⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) |
| initoeu1.b | ⊢ (𝜑 → 𝐵 ∈ (InitO‘𝐶)) |
| Ref | Expression |
|---|---|
| initoeu1w | ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initoeu1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | initoeu1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) | |
| 3 | initoeu1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (InitO‘𝐶)) | |
| 4 | 1, 2, 3 | initoeu1 17949 | . . 3 ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
| 5 | euex 2570 | . . 3 ⊢ (∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
| 7 | eqid 2729 | . . 3 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
| 8 | eqid 2729 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | initoo 17945 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐴 ∈ (InitO‘𝐶) → 𝐴 ∈ (Base‘𝐶))) | |
| 10 | 1, 2, 9 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐶)) |
| 11 | initoo 17945 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐵 ∈ (InitO‘𝐶) → 𝐵 ∈ (Base‘𝐶))) | |
| 12 | 1, 3, 11 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (Base‘𝐶)) |
| 13 | 7, 8, 1, 10, 12 | cic 17737 | . 2 ⊢ (𝜑 → (𝐴( ≃𝑐 ‘𝐶)𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))) |
| 14 | 6, 13 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2109 ∃!weu 2561 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Catccat 17601 Isociso 17684 ≃𝑐 ccic 17733 InitOcinito 17919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-supp 8117 df-cat 17605 df-cid 17606 df-sect 17685 df-inv 17686 df-iso 17687 df-cic 17734 df-inito 17922 |
| This theorem is referenced by: nzerooringczr 21366 |
| Copyright terms: Public domain | W3C validator |