Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > initoeu1w | Structured version Visualization version GIF version |
Description: Initial objects are essentially unique (weak form), i.e. if A and B are initial objects, then A and B are isomorphic. Proposition 7.3 (1) of [Adamek] p. 102. (Contributed by AV, 6-Apr-2020.) |
Ref | Expression |
---|---|
initoeu1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
initoeu1.a | ⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) |
initoeu1.b | ⊢ (𝜑 → 𝐵 ∈ (InitO‘𝐶)) |
Ref | Expression |
---|---|
initoeu1w | ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | initoeu1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | initoeu1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) | |
3 | initoeu1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (InitO‘𝐶)) | |
4 | 1, 2, 3 | initoeu1 17642 | . . 3 ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
5 | euex 2577 | . . 3 ⊢ (∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
7 | eqid 2738 | . . 3 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
8 | eqid 2738 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
9 | initoo 17638 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐴 ∈ (InitO‘𝐶) → 𝐴 ∈ (Base‘𝐶))) | |
10 | 1, 2, 9 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐶)) |
11 | initoo 17638 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐵 ∈ (InitO‘𝐶) → 𝐵 ∈ (Base‘𝐶))) | |
12 | 1, 3, 11 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (Base‘𝐶)) |
13 | 7, 8, 1, 10, 12 | cic 17428 | . 2 ⊢ (𝜑 → (𝐴( ≃𝑐 ‘𝐶)𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))) |
14 | 6, 13 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 ∈ wcel 2108 ∃!weu 2568 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Catccat 17290 Isociso 17375 ≃𝑐 ccic 17424 InitOcinito 17612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-supp 7949 df-cat 17294 df-cid 17295 df-sect 17376 df-inv 17377 df-iso 17378 df-cic 17425 df-inito 17615 |
This theorem is referenced by: nzerooringczr 45518 |
Copyright terms: Public domain | W3C validator |