|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > initoeu1w | Structured version Visualization version GIF version | ||
| Description: Initial objects are essentially unique (weak form), i.e. if A and B are initial objects, then A and B are isomorphic. Proposition 7.3 (1) of [Adamek] p. 102. (Contributed by AV, 6-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| initoeu1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) | 
| initoeu1.a | ⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) | 
| initoeu1.b | ⊢ (𝜑 → 𝐵 ∈ (InitO‘𝐶)) | 
| Ref | Expression | 
|---|---|
| initoeu1w | ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | initoeu1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | initoeu1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) | |
| 3 | initoeu1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (InitO‘𝐶)) | |
| 4 | 1, 2, 3 | initoeu1 18056 | . . 3 ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) | 
| 5 | euex 2577 | . . 3 ⊢ (∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) | 
| 7 | eqid 2737 | . . 3 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
| 8 | eqid 2737 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | initoo 18052 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐴 ∈ (InitO‘𝐶) → 𝐴 ∈ (Base‘𝐶))) | |
| 10 | 1, 2, 9 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐶)) | 
| 11 | initoo 18052 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐵 ∈ (InitO‘𝐶) → 𝐵 ∈ (Base‘𝐶))) | |
| 12 | 1, 3, 11 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (Base‘𝐶)) | 
| 13 | 7, 8, 1, 10, 12 | cic 17843 | . 2 ⊢ (𝜑 → (𝐴( ≃𝑐 ‘𝐶)𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))) | 
| 14 | 6, 13 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2108 ∃!weu 2568 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 Catccat 17707 Isociso 17790 ≃𝑐 ccic 17839 InitOcinito 18026 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-supp 8186 df-cat 17711 df-cid 17712 df-sect 17791 df-inv 17792 df-iso 17793 df-cic 17840 df-inito 18029 | 
| This theorem is referenced by: nzerooringczr 21491 | 
| Copyright terms: Public domain | W3C validator |