MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu1w Structured version   Visualization version   GIF version

Theorem initoeu1w 17981
Description: Initial objects are essentially unique (weak form), i.e. if A and B are initial objects, then A and B are isomorphic. Proposition 7.3 (1) of [Adamek] p. 102. (Contributed by AV, 6-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu1.b (𝜑𝐵 ∈ (InitO‘𝐶))
Assertion
Ref Expression
initoeu1w (𝜑𝐴( ≃𝑐𝐶)𝐵)

Proof of Theorem initoeu1w
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 initoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
2 initoeu1.a . . . 4 (𝜑𝐴 ∈ (InitO‘𝐶))
3 initoeu1.b . . . 4 (𝜑𝐵 ∈ (InitO‘𝐶))
41, 2, 3initoeu1 17980 . . 3 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
5 euex 2571 . . 3 (∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
64, 5syl 17 . 2 (𝜑 → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
7 eqid 2730 . . 3 (Iso‘𝐶) = (Iso‘𝐶)
8 eqid 2730 . . 3 (Base‘𝐶) = (Base‘𝐶)
9 initoo 17976 . . . 4 (𝐶 ∈ Cat → (𝐴 ∈ (InitO‘𝐶) → 𝐴 ∈ (Base‘𝐶)))
101, 2, 9sylc 65 . . 3 (𝜑𝐴 ∈ (Base‘𝐶))
11 initoo 17976 . . . 4 (𝐶 ∈ Cat → (𝐵 ∈ (InitO‘𝐶) → 𝐵 ∈ (Base‘𝐶)))
121, 3, 11sylc 65 . . 3 (𝜑𝐵 ∈ (Base‘𝐶))
137, 8, 1, 10, 12cic 17768 . 2 (𝜑 → (𝐴( ≃𝑐𝐶)𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
146, 13mpbird 257 1 (𝜑𝐴( ≃𝑐𝐶)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1779  wcel 2109  ∃!weu 2562   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  Catccat 17632  Isociso 17715  𝑐 ccic 17764  InitOcinito 17950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-supp 8143  df-cat 17636  df-cid 17637  df-sect 17716  df-inv 17717  df-iso 17718  df-cic 17765  df-inito 17953
This theorem is referenced by:  nzerooringczr  21397
  Copyright terms: Public domain W3C validator