MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu1w Structured version   Visualization version   GIF version

Theorem initoeu1w 18057
Description: Initial objects are essentially unique (weak form), i.e. if A and B are initial objects, then A and B are isomorphic. Proposition 7.3 (1) of [Adamek] p. 102. (Contributed by AV, 6-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu1.b (𝜑𝐵 ∈ (InitO‘𝐶))
Assertion
Ref Expression
initoeu1w (𝜑𝐴( ≃𝑐𝐶)𝐵)

Proof of Theorem initoeu1w
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 initoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
2 initoeu1.a . . . 4 (𝜑𝐴 ∈ (InitO‘𝐶))
3 initoeu1.b . . . 4 (𝜑𝐵 ∈ (InitO‘𝐶))
41, 2, 3initoeu1 18056 . . 3 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
5 euex 2577 . . 3 (∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
64, 5syl 17 . 2 (𝜑 → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
7 eqid 2737 . . 3 (Iso‘𝐶) = (Iso‘𝐶)
8 eqid 2737 . . 3 (Base‘𝐶) = (Base‘𝐶)
9 initoo 18052 . . . 4 (𝐶 ∈ Cat → (𝐴 ∈ (InitO‘𝐶) → 𝐴 ∈ (Base‘𝐶)))
101, 2, 9sylc 65 . . 3 (𝜑𝐴 ∈ (Base‘𝐶))
11 initoo 18052 . . . 4 (𝐶 ∈ Cat → (𝐵 ∈ (InitO‘𝐶) → 𝐵 ∈ (Base‘𝐶)))
121, 3, 11sylc 65 . . 3 (𝜑𝐵 ∈ (Base‘𝐶))
137, 8, 1, 10, 12cic 17843 . 2 (𝜑 → (𝐴( ≃𝑐𝐶)𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
146, 13mpbird 257 1 (𝜑𝐴( ≃𝑐𝐶)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1779  wcel 2108  ∃!weu 2568   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  Catccat 17707  Isociso 17790  𝑐 ccic 17839  InitOcinito 18026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-supp 8186  df-cat 17711  df-cid 17712  df-sect 17791  df-inv 17792  df-iso 17793  df-cic 17840  df-inito 18029
This theorem is referenced by:  nzerooringczr  21491
  Copyright terms: Public domain W3C validator