MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu1w Structured version   Visualization version   GIF version

Theorem initoeu1w 17919
Description: Initial objects are essentially unique (weak form), i.e. if A and B are initial objects, then A and B are isomorphic. Proposition 7.3 (1) of [Adamek] p. 102. (Contributed by AV, 6-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu1.b (𝜑𝐵 ∈ (InitO‘𝐶))
Assertion
Ref Expression
initoeu1w (𝜑𝐴( ≃𝑐𝐶)𝐵)

Proof of Theorem initoeu1w
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 initoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
2 initoeu1.a . . . 4 (𝜑𝐴 ∈ (InitO‘𝐶))
3 initoeu1.b . . . 4 (𝜑𝐵 ∈ (InitO‘𝐶))
41, 2, 3initoeu1 17918 . . 3 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
5 euex 2572 . . 3 (∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
64, 5syl 17 . 2 (𝜑 → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
7 eqid 2731 . . 3 (Iso‘𝐶) = (Iso‘𝐶)
8 eqid 2731 . . 3 (Base‘𝐶) = (Base‘𝐶)
9 initoo 17914 . . . 4 (𝐶 ∈ Cat → (𝐴 ∈ (InitO‘𝐶) → 𝐴 ∈ (Base‘𝐶)))
101, 2, 9sylc 65 . . 3 (𝜑𝐴 ∈ (Base‘𝐶))
11 initoo 17914 . . . 4 (𝐶 ∈ Cat → (𝐵 ∈ (InitO‘𝐶) → 𝐵 ∈ (Base‘𝐶)))
121, 3, 11sylc 65 . . 3 (𝜑𝐵 ∈ (Base‘𝐶))
137, 8, 1, 10, 12cic 17706 . 2 (𝜑 → (𝐴( ≃𝑐𝐶)𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
146, 13mpbird 257 1 (𝜑𝐴( ≃𝑐𝐶)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wcel 2111  ∃!weu 2563   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  Catccat 17570  Isociso 17653  𝑐 ccic 17702  InitOcinito 17888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-supp 8091  df-cat 17574  df-cid 17575  df-sect 17654  df-inv 17655  df-iso 17656  df-cic 17703  df-inito 17891
This theorem is referenced by:  nzerooringczr  21417
  Copyright terms: Public domain W3C validator