MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2initoinv Structured version   Visualization version   GIF version

Theorem 2initoinv 17350
Description: Morphisms between two initial objects are inverses. (Contributed by AV, 14-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu1.b (𝜑𝐵 ∈ (InitO‘𝐶))
Assertion
Ref Expression
2initoinv ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺)

Proof of Theorem 2initoinv
StepHypRef Expression
1 eqid 2758 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2758 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2758 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 initoeu1.c . . . . . 6 (𝜑𝐶 ∈ Cat)
543ad2ant1 1130 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat)
6 initoeu1.a . . . . . . 7 (𝜑𝐴 ∈ (InitO‘𝐶))
7 initoo 17347 . . . . . . 7 (𝐶 ∈ Cat → (𝐴 ∈ (InitO‘𝐶) → 𝐴 ∈ (Base‘𝐶)))
84, 6, 7sylc 65 . . . . . 6 (𝜑𝐴 ∈ (Base‘𝐶))
983ad2ant1 1130 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶))
10 initoeu1.b . . . . . . 7 (𝜑𝐵 ∈ (InitO‘𝐶))
11 initoo 17347 . . . . . . 7 (𝐶 ∈ Cat → (𝐵 ∈ (InitO‘𝐶) → 𝐵 ∈ (Base‘𝐶)))
124, 10, 11sylc 65 . . . . . 6 (𝜑𝐵 ∈ (Base‘𝐶))
13123ad2ant1 1130 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶))
14 simp3 1135 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵))
15 simp2 1134 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴))
161, 2, 3, 5, 9, 13, 9, 14, 15catcocl 17028 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴))
171, 2, 4initoid 17341 . . . . . . . 8 ((𝜑𝐴 ∈ (InitO‘𝐶)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
186, 17mpdan 686 . . . . . . 7 (𝜑 → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
19183ad2ant1 1130 . . . . . 6 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
2019eleq2d 2837 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) ↔ (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)}))
21 elsni 4542 . . . . 5 ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)} → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))
2220, 21syl6bi 256 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)))
2316, 22mpd 15 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))
24 eqid 2758 . . . 4 (Id‘𝐶) = (Id‘𝐶)
25 eqid 2758 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
261, 2, 3, 24, 25, 5, 9, 13, 14, 15issect2 17097 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺 ↔ (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)))
2723, 26mpbird 260 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Sect‘𝐶)𝐵)𝐺)
281, 2, 3, 5, 13, 9, 13, 15, 14catcocl 17028 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵))
291, 2, 4initoid 17341 . . . . . . . 8 ((𝜑𝐵 ∈ (InitO‘𝐶)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
3010, 29mpdan 686 . . . . . . 7 (𝜑 → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
31303ad2ant1 1130 . . . . . 6 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
3231eleq2d 2837 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) ↔ (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)}))
33 elsni 4542 . . . . 5 ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)} → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))
3432, 33syl6bi 256 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)))
3528, 34mpd 15 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))
361, 2, 3, 24, 25, 5, 13, 9, 15, 14issect2 17097 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(𝐵(Sect‘𝐶)𝐴)𝐹 ↔ (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)))
3735, 36mpbird 260 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)
38 eqid 2758 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
391, 38, 4, 8, 12, 25isinv 17103 . . 3 (𝜑 → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)))
40393ad2ant1 1130 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)))
4127, 37, 40mpbir2and 712 1 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {csn 4525  cop 4531   class class class wbr 5036  cfv 6340  (class class class)co 7156  Basecbs 16555  Hom chom 16648  compcco 16649  Catccat 17007  Idccid 17008  Sectcsect 17087  Invcinv 17088  InitOcinito 17321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-cat 17011  df-cid 17012  df-sect 17090  df-inv 17091  df-inito 17324
This theorem is referenced by:  initoeu1  17351
  Copyright terms: Public domain W3C validator