MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2initoinv Structured version   Visualization version   GIF version

Theorem 2initoinv 17979
Description: Morphisms between two initial objects are inverses. (Contributed by AV, 14-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu1.b (𝜑𝐵 ∈ (InitO‘𝐶))
Assertion
Ref Expression
2initoinv ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺)

Proof of Theorem 2initoinv
StepHypRef Expression
1 eqid 2730 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2730 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2730 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 initoeu1.c . . . . . 6 (𝜑𝐶 ∈ Cat)
543ad2ant1 1133 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat)
6 initoeu1.a . . . . . . 7 (𝜑𝐴 ∈ (InitO‘𝐶))
7 initoo 17976 . . . . . . 7 (𝐶 ∈ Cat → (𝐴 ∈ (InitO‘𝐶) → 𝐴 ∈ (Base‘𝐶)))
84, 6, 7sylc 65 . . . . . 6 (𝜑𝐴 ∈ (Base‘𝐶))
983ad2ant1 1133 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶))
10 initoeu1.b . . . . . . 7 (𝜑𝐵 ∈ (InitO‘𝐶))
11 initoo 17976 . . . . . . 7 (𝐶 ∈ Cat → (𝐵 ∈ (InitO‘𝐶) → 𝐵 ∈ (Base‘𝐶)))
124, 10, 11sylc 65 . . . . . 6 (𝜑𝐵 ∈ (Base‘𝐶))
13123ad2ant1 1133 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶))
14 simp3 1138 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵))
15 simp2 1137 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴))
161, 2, 3, 5, 9, 13, 9, 14, 15catcocl 17653 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴))
171, 2, 4initoid 17970 . . . . . . . 8 ((𝜑𝐴 ∈ (InitO‘𝐶)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
186, 17mpdan 687 . . . . . . 7 (𝜑 → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
19183ad2ant1 1133 . . . . . 6 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
2019eleq2d 2815 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) ↔ (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)}))
21 elsni 4609 . . . . 5 ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)} → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))
2220, 21biimtrdi 253 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)))
2316, 22mpd 15 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))
24 eqid 2730 . . . 4 (Id‘𝐶) = (Id‘𝐶)
25 eqid 2730 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
261, 2, 3, 24, 25, 5, 9, 13, 14, 15issect2 17723 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺 ↔ (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)))
2723, 26mpbird 257 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Sect‘𝐶)𝐵)𝐺)
281, 2, 3, 5, 13, 9, 13, 15, 14catcocl 17653 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵))
291, 2, 4initoid 17970 . . . . . . . 8 ((𝜑𝐵 ∈ (InitO‘𝐶)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
3010, 29mpdan 687 . . . . . . 7 (𝜑 → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
31303ad2ant1 1133 . . . . . 6 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
3231eleq2d 2815 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) ↔ (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)}))
33 elsni 4609 . . . . 5 ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)} → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))
3432, 33biimtrdi 253 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)))
3528, 34mpd 15 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))
361, 2, 3, 24, 25, 5, 13, 9, 15, 14issect2 17723 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(𝐵(Sect‘𝐶)𝐴)𝐹 ↔ (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)))
3735, 36mpbird 257 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)
38 eqid 2730 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
391, 38, 4, 8, 12, 25isinv 17729 . . 3 (𝜑 → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)))
40393ad2ant1 1133 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)))
4127, 37, 40mpbir2and 713 1 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {csn 4592  cop 4598   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Idccid 17633  Sectcsect 17713  Invcinv 17714  InitOcinito 17950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-cat 17636  df-cid 17637  df-sect 17716  df-inv 17717  df-inito 17953
This theorem is referenced by:  initoeu1  17980
  Copyright terms: Public domain W3C validator