Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocleubd Structured version   Visualization version   GIF version

Theorem iocleubd 44272
Description: An element of a left-open right-closed interval is smaller than or equal to its upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
iocleubd.1 (𝜑𝐴 ∈ ℝ*)
iocleubd.2 (𝜑𝐵 ∈ ℝ*)
iocleubd.3 (𝜑𝐶 ∈ (𝐴(,]𝐵))
Assertion
Ref Expression
iocleubd (𝜑𝐶𝐵)

Proof of Theorem iocleubd
StepHypRef Expression
1 iocleubd.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 iocleubd.2 . 2 (𝜑𝐵 ∈ ℝ*)
3 iocleubd.3 . 2 (𝜑𝐶 ∈ (𝐴(,]𝐵))
4 iocleub 44216 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,]𝐵)) → 𝐶𝐵)
51, 2, 3, 4syl3anc 1372 1 (𝜑𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5149  (class class class)co 7409  *cxr 11247  cle 11249  (,]cioc 13325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-xr 11252  df-ioc 13329
This theorem is referenced by:  preimaiocmnf  44274  smfsuplem1  45527
  Copyright terms: Public domain W3C validator