MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icogelbd Structured version   Visualization version   GIF version

Theorem icogelbd 13365
Description: An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
icogelbd.1 (𝜑𝐴 ∈ ℝ*)
icogelbd.2 (𝜑𝐵 ∈ ℝ*)
icogelbd.3 (𝜑𝐶 ∈ (𝐴[,)𝐵))
Assertion
Ref Expression
icogelbd (𝜑𝐴𝐶)

Proof of Theorem icogelbd
StepHypRef Expression
1 icogelbd.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 icogelbd.2 . 2 (𝜑𝐵 ∈ ℝ*)
3 icogelbd.3 . 2 (𝜑𝐶 ∈ (𝐴[,)𝐵))
4 icogelb 13364 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
51, 2, 3, 4syl3anc 1373 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5110  (class class class)co 7390  *cxr 11214  cle 11216  [,)cico 13315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-xr 11219  df-ico 13319
This theorem is referenced by:  uzinico  45564  limsupresico  45705  limsupmnflem  45725  liminfresico  45776  liminflelimsuplem  45780  smfliminflem  46835  rehalfge1  47340
  Copyright terms: Public domain W3C validator