| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icogelbd | Structured version Visualization version GIF version | ||
| Description: An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| icogelbd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| icogelbd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| icogelbd.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
| Ref | Expression |
|---|---|
| icogelbd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icogelbd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | icogelbd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | icogelbd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) | |
| 4 | icogelb 13299 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ≤ 𝐶) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝ*cxr 11148 ≤ cle 11150 [,)cico 13250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-xr 11153 df-ico 13254 |
| This theorem is referenced by: uzinico 45540 limsupresico 45681 limsupmnflem 45701 liminfresico 45752 liminflelimsuplem 45756 smfliminflem 46811 rehalfge1 47319 |
| Copyright terms: Public domain | W3C validator |