Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocleub Structured version   Visualization version   GIF version

Theorem iocleub 42931
Description: An element of a left-open right-closed interval is smaller than or equal to its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iocleub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,]𝐵)) → 𝐶𝐵)

Proof of Theorem iocleub
StepHypRef Expression
1 elioc1 13050 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
2 simp3 1136 . . 3 ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵) → 𝐶𝐵)
31, 2syl6bi 252 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) → 𝐶𝐵))
433impia 1115 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,]𝐵)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108   class class class wbr 5070  (class class class)co 7255  *cxr 10939   < clt 10940  cle 10941  (,]cioc 13009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-xr 10944  df-ioc 13013
This theorem is referenced by:  iocopn  42948  iccdificc  42967  iocleubd  42987  limcresiooub  43073  fourierdlem19  43557  fourierdlem35  43573  fourierdlem41  43579  fourierdlem46  43583  fourierdlem48  43585  fourierdlem49  43586  fourierswlem  43661  fouriersw  43662  pimdecfgtioc  44139  pimincfltioc  44140
  Copyright terms: Public domain W3C validator