Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocleub Structured version   Visualization version   GIF version

Theorem iocleub 43429
Description: An element of a left-open right-closed interval is smaller than or equal to its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iocleub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,]𝐵)) → 𝐶𝐵)

Proof of Theorem iocleub
StepHypRef Expression
1 elioc1 13226 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
2 simp3 1138 . . 3 ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵) → 𝐶𝐵)
31, 2syl6bi 253 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) → 𝐶𝐵))
433impia 1117 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,]𝐵)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087  wcel 2106   class class class wbr 5096  (class class class)co 7341  *cxr 11113   < clt 11114  cle 11115  (,]cioc 13185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3731  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-opab 5159  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-iota 6435  df-fun 6485  df-fv 6491  df-ov 7344  df-oprab 7345  df-mpo 7346  df-xr 11118  df-ioc 13189
This theorem is referenced by:  iocopn  43446  iccdificc  43465  iocleubd  43485  limcresiooub  43571  fourierdlem19  44055  fourierdlem35  44071  fourierdlem41  44077  fourierdlem46  44081  fourierdlem48  44083  fourierdlem49  44084  fourierswlem  44159  fouriersw  44160  pimdecfgtioc  44642  pimincfltioc  44643
  Copyright terms: Public domain W3C validator