Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzinico Structured version   Visualization version   GIF version

Theorem uzinico 42608
Description: An upper interval of integers is the intersection of the integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzinico.1 (𝜑𝑀 ∈ ℤ)
uzinico.2 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzinico (𝜑𝑍 = (ℤ ∩ (𝑀[,)+∞)))

Proof of Theorem uzinico
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzinico.2 . . . . . . . 8 𝑍 = (ℤ𝑀)
21eluzelz2 42451 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℤ)
32adantl 485 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
4 uzinico.1 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
54zred 12139 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
65rexrd 10742 . . . . . . . 8 (𝜑𝑀 ∈ ℝ*)
76adantr 484 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑀 ∈ ℝ*)
8 pnfxr 10746 . . . . . . . 8 +∞ ∈ ℝ*
98a1i 11 . . . . . . 7 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
10 zssre 12040 . . . . . . . . . 10 ℤ ⊆ ℝ
11 ressxr 10736 . . . . . . . . . 10 ℝ ⊆ ℝ*
1210, 11sstri 3903 . . . . . . . . 9 ℤ ⊆ ℝ*
1312, 2sseldi 3892 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℝ*)
1413adantl 485 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑘 ∈ ℝ*)
151eleq2i 2843 . . . . . . . . . 10 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1615biimpi 219 . . . . . . . . 9 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
17 eluzle 12308 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
1816, 17syl 17 . . . . . . . 8 (𝑘𝑍𝑀𝑘)
1918adantl 485 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑀𝑘)
2010, 2sseldi 3892 . . . . . . . . 9 (𝑘𝑍𝑘 ∈ ℝ)
2120ltpnfd 12570 . . . . . . . 8 (𝑘𝑍𝑘 < +∞)
2221adantl 485 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑘 < +∞)
237, 9, 14, 19, 22elicod 12842 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ (𝑀[,)+∞))
243, 23elind 4101 . . . . 5 ((𝜑𝑘𝑍) → 𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)))
2524ex 416 . . . 4 (𝜑 → (𝑘𝑍𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))))
264adantr 484 . . . . . 6 ((𝜑𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑀 ∈ ℤ)
27 elinel1 4102 . . . . . . 7 (𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)) → 𝑘 ∈ ℤ)
2827adantl 485 . . . . . 6 ((𝜑𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑘 ∈ ℤ)
29 elinel2 4103 . . . . . . . 8 (𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)) → 𝑘 ∈ (𝑀[,)+∞))
3029adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑘 ∈ (𝑀[,)+∞))
316adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀[,)+∞)) → 𝑀 ∈ ℝ*)
328a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀[,)+∞)) → +∞ ∈ ℝ*)
33 simpr 488 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀[,)+∞)) → 𝑘 ∈ (𝑀[,)+∞))
3431, 32, 33icogelbd 42606 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀[,)+∞)) → 𝑀𝑘)
3530, 34syldan 594 . . . . . 6 ((𝜑𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑀𝑘)
361, 26, 28, 35eluzd 42457 . . . . 5 ((𝜑𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑘𝑍)
3736ex 416 . . . 4 (𝜑 → (𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)) → 𝑘𝑍))
3825, 37impbid 215 . . 3 (𝜑 → (𝑘𝑍𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))))
3938alrimiv 1928 . 2 (𝜑 → ∀𝑘(𝑘𝑍𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))))
40 dfcleq 2751 . 2 (𝑍 = (ℤ ∩ (𝑀[,)+∞)) ↔ ∀𝑘(𝑘𝑍𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))))
4139, 40sylibr 237 1 (𝜑𝑍 = (ℤ ∩ (𝑀[,)+∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  cin 3859   class class class wbr 5036  cfv 6340  (class class class)co 7156  cr 10587  +∞cpnf 10723  *cxr 10725   < clt 10726  cle 10727  cz 12033  cuz 12295  [,)cico 12794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-pnf 10728  df-xr 10730  df-ltxr 10731  df-neg 10924  df-z 12034  df-uz 12296  df-ico 12798
This theorem is referenced by:  uzinico2  42610  limsupresuz  42756  liminfresuz  42837
  Copyright terms: Public domain W3C validator