Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzinico Structured version   Visualization version   GIF version

Theorem uzinico 45550
Description: An upper interval of integers is the intersection of the integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzinico.1 (𝜑𝑀 ∈ ℤ)
uzinico.2 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzinico (𝜑𝑍 = (ℤ ∩ (𝑀[,)+∞)))

Proof of Theorem uzinico
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzinico.2 . . . . . . . 8 𝑍 = (ℤ𝑀)
21eluzelz2 45392 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℤ)
32adantl 481 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
4 uzinico.1 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
54zred 12614 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
65rexrd 11200 . . . . . . . 8 (𝜑𝑀 ∈ ℝ*)
76adantr 480 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑀 ∈ ℝ*)
8 pnfxr 11204 . . . . . . . 8 +∞ ∈ ℝ*
98a1i 11 . . . . . . 7 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
10 zssre 12512 . . . . . . . . . 10 ℤ ⊆ ℝ
11 ressxr 11194 . . . . . . . . . 10 ℝ ⊆ ℝ*
1210, 11sstri 3953 . . . . . . . . 9 ℤ ⊆ ℝ*
1312, 2sselid 3941 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℝ*)
1413adantl 481 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑘 ∈ ℝ*)
151eleq2i 2820 . . . . . . . . . 10 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1615biimpi 216 . . . . . . . . 9 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
17 eluzle 12782 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
1816, 17syl 17 . . . . . . . 8 (𝑘𝑍𝑀𝑘)
1918adantl 481 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑀𝑘)
2010, 2sselid 3941 . . . . . . . . 9 (𝑘𝑍𝑘 ∈ ℝ)
2120ltpnfd 13057 . . . . . . . 8 (𝑘𝑍𝑘 < +∞)
2221adantl 481 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑘 < +∞)
237, 9, 14, 19, 22elicod 13332 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ (𝑀[,)+∞))
243, 23elind 4159 . . . . 5 ((𝜑𝑘𝑍) → 𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)))
2524ex 412 . . . 4 (𝜑 → (𝑘𝑍𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))))
264adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑀 ∈ ℤ)
27 elinel1 4160 . . . . . . 7 (𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)) → 𝑘 ∈ ℤ)
2827adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑘 ∈ ℤ)
29 elinel2 4161 . . . . . . . 8 (𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)) → 𝑘 ∈ (𝑀[,)+∞))
3029adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑘 ∈ (𝑀[,)+∞))
316adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀[,)+∞)) → 𝑀 ∈ ℝ*)
328a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀[,)+∞)) → +∞ ∈ ℝ*)
33 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀[,)+∞)) → 𝑘 ∈ (𝑀[,)+∞))
3431, 32, 33icogelbd 13334 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀[,)+∞)) → 𝑀𝑘)
3530, 34syldan 591 . . . . . 6 ((𝜑𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑀𝑘)
361, 26, 28, 35eluzd 45398 . . . . 5 ((𝜑𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑘𝑍)
3736ex 412 . . . 4 (𝜑 → (𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)) → 𝑘𝑍))
3825, 37impbid 212 . . 3 (𝜑 → (𝑘𝑍𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))))
3938alrimiv 1927 . 2 (𝜑 → ∀𝑘(𝑘𝑍𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))))
40 dfcleq 2722 . 2 (𝑍 = (ℤ ∩ (𝑀[,)+∞)) ↔ ∀𝑘(𝑘𝑍𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))))
4139, 40sylibr 234 1 (𝜑𝑍 = (ℤ ∩ (𝑀[,)+∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  cin 3910   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cz 12505  cuz 12769  [,)cico 13284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-pnf 11186  df-xr 11188  df-ltxr 11189  df-neg 11384  df-z 12506  df-uz 12770  df-ico 13288
This theorem is referenced by:  uzinico2  45552  limsupresuz  45694  liminfresuz  45775
  Copyright terms: Public domain W3C validator