Step | Hyp | Ref
| Expression |
1 | | uzinico.2 |
. . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | 1 | eluzelz2 42943 |
. . . . . . 7
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
3 | 2 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℤ) |
4 | | uzinico.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | 4 | zred 12426 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℝ) |
6 | 5 | rexrd 11025 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℝ*) |
7 | 6 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑀 ∈
ℝ*) |
8 | | pnfxr 11029 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
9 | 8 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → +∞ ∈
ℝ*) |
10 | | zssre 12326 |
. . . . . . . . . 10
⊢ ℤ
⊆ ℝ |
11 | | ressxr 11019 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℝ* |
12 | 10, 11 | sstri 3930 |
. . . . . . . . 9
⊢ ℤ
⊆ ℝ* |
13 | 12, 2 | sselid 3919 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℝ*) |
14 | 13 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℝ*) |
15 | 1 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
16 | 15 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ (ℤ≥‘𝑀)) |
17 | | eluzle 12595 |
. . . . . . . . 9
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑘) |
18 | 16, 17 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝑍 → 𝑀 ≤ 𝑘) |
19 | 18 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑀 ≤ 𝑘) |
20 | 10, 2 | sselid 3919 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℝ) |
21 | 20 | ltpnfd 12857 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝑍 → 𝑘 < +∞) |
22 | 21 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 < +∞) |
23 | 7, 9, 14, 19, 22 | elicod 13129 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ (𝑀[,)+∞)) |
24 | 3, 23 | elind 4128 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) |
25 | 24 | ex 413 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝑍 → 𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)))) |
26 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑀 ∈ ℤ) |
27 | | elinel1 4129 |
. . . . . . 7
⊢ (𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)) → 𝑘 ∈
ℤ) |
28 | 27 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑘 ∈ ℤ) |
29 | | elinel2 4130 |
. . . . . . . 8
⊢ (𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)) → 𝑘 ∈ (𝑀[,)+∞)) |
30 | 29 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑘 ∈ (𝑀[,)+∞)) |
31 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀[,)+∞)) → 𝑀 ∈
ℝ*) |
32 | 8 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀[,)+∞)) → +∞ ∈
ℝ*) |
33 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀[,)+∞)) → 𝑘 ∈ (𝑀[,)+∞)) |
34 | 31, 32, 33 | icogelbd 43096 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀[,)+∞)) → 𝑀 ≤ 𝑘) |
35 | 30, 34 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑀 ≤ 𝑘) |
36 | 1, 26, 28, 35 | eluzd 42949 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ ∩ (𝑀[,)+∞))) → 𝑘 ∈ 𝑍) |
37 | 36 | ex 413 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)) → 𝑘 ∈ 𝑍)) |
38 | 25, 37 | impbid 211 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)))) |
39 | 38 | alrimiv 1930 |
. 2
⊢ (𝜑 → ∀𝑘(𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)))) |
40 | | dfcleq 2731 |
. 2
⊢ (𝑍 = (ℤ ∩ (𝑀[,)+∞)) ↔
∀𝑘(𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ ∩ (𝑀[,)+∞)))) |
41 | 39, 40 | sylibr 233 |
1
⊢ (𝜑 → 𝑍 = (ℤ ∩ (𝑀[,)+∞))) |