Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaiocmnf Structured version   Visualization version   GIF version

Theorem preimaiocmnf 45589
Description: Preimage of a right-closed interval, unbounded below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
preimaiocmnf.1 (𝜑𝐹:𝐴⟶ℝ)
preimaiocmnf.2 (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
preimaiocmnf (𝜑 → (𝐹 “ (-∞(,]𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ≤ 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem preimaiocmnf
StepHypRef Expression
1 preimaiocmnf.1 . . . 4 (𝜑𝐹:𝐴⟶ℝ)
21ffnd 6707 . . 3 (𝜑𝐹 Fn 𝐴)
3 fncnvima2 7051 . . 3 (𝐹 Fn 𝐴 → (𝐹 “ (-∞(,]𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞(,]𝐵)})
42, 3syl 17 . 2 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞(,]𝐵)})
5 mnfxr 11292 . . . . . . . 8 -∞ ∈ ℝ*
65a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ∈ (-∞(,]𝐵)) → -∞ ∈ ℝ*)
7 preimaiocmnf.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
87adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ∈ (-∞(,]𝐵)) → 𝐵 ∈ ℝ*)
9 simpr 484 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ∈ (-∞(,]𝐵)) → (𝐹𝑥) ∈ (-∞(,]𝐵))
106, 8, 9iocleubd 45587 . . . . . 6 ((𝜑 ∧ (𝐹𝑥) ∈ (-∞(,]𝐵)) → (𝐹𝑥) ≤ 𝐵)
1110ex 412 . . . . 5 (𝜑 → ((𝐹𝑥) ∈ (-∞(,]𝐵) → (𝐹𝑥) ≤ 𝐵))
1211adantr 480 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∈ (-∞(,]𝐵) → (𝐹𝑥) ≤ 𝐵))
135a1i 11 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ≤ 𝐵) → -∞ ∈ ℝ*)
147adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ≤ 𝐵) → 𝐵 ∈ ℝ*)
1514adantlr 715 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ≤ 𝐵) → 𝐵 ∈ ℝ*)
161ffvelcdmda 7074 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1716rexrd 11285 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ*)
1817adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ≤ 𝐵) → (𝐹𝑥) ∈ ℝ*)
1916mnfltd 13140 . . . . . . 7 ((𝜑𝑥𝐴) → -∞ < (𝐹𝑥))
2019adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ≤ 𝐵) → -∞ < (𝐹𝑥))
21 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ≤ 𝐵) → (𝐹𝑥) ≤ 𝐵)
2213, 15, 18, 20, 21eliocd 45536 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ≤ 𝐵) → (𝐹𝑥) ∈ (-∞(,]𝐵))
2322ex 412 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥) ≤ 𝐵 → (𝐹𝑥) ∈ (-∞(,]𝐵)))
2412, 23impbid 212 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∈ (-∞(,]𝐵) ↔ (𝐹𝑥) ≤ 𝐵))
2524rabbidva 3422 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞(,]𝐵)} = {𝑥𝐴 ∣ (𝐹𝑥) ≤ 𝐵})
264, 25eqtrd 2770 1 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ≤ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3415   class class class wbr 5119  ccnv 5653  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  cr 11128  -∞cmnf 11267  *cxr 11268   < clt 11269  cle 11270  (,]cioc 13363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-ioc 13367
This theorem is referenced by:  issmfle2d  46838
  Copyright terms: Public domain W3C validator