![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimaiocmnf | Structured version Visualization version GIF version |
Description: Preimage of a right-closed interval, unbounded below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
preimaiocmnf.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
preimaiocmnf.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
preimaiocmnf | ⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≤ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimaiocmnf.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
2 | 1 | ffnd 6738 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | fncnvima2 7081 | . . 3 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞(,]𝐵)}) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞(,]𝐵)}) |
5 | mnfxr 11316 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → -∞ ∈ ℝ*) |
7 | preimaiocmnf.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → 𝐵 ∈ ℝ*) |
9 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → (𝐹‘𝑥) ∈ (-∞(,]𝐵)) | |
10 | 6, 8, 9 | iocleubd 45512 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → (𝐹‘𝑥) ≤ 𝐵) |
11 | 10 | ex 412 | . . . . 5 ⊢ (𝜑 → ((𝐹‘𝑥) ∈ (-∞(,]𝐵) → (𝐹‘𝑥) ≤ 𝐵)) |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞(,]𝐵) → (𝐹‘𝑥) ≤ 𝐵)) |
13 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → -∞ ∈ ℝ*) |
14 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ≤ 𝐵) → 𝐵 ∈ ℝ*) |
15 | 14 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → 𝐵 ∈ ℝ*) |
16 | 1 | ffvelcdmda 7104 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
17 | 16 | rexrd 11309 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
18 | 17 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → (𝐹‘𝑥) ∈ ℝ*) |
19 | 16 | mnfltd 13164 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ < (𝐹‘𝑥)) |
20 | 19 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → -∞ < (𝐹‘𝑥)) |
21 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → (𝐹‘𝑥) ≤ 𝐵) | |
22 | 13, 15, 18, 20, 21 | eliocd 45460 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → (𝐹‘𝑥) ∈ (-∞(,]𝐵)) |
23 | 22 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≤ 𝐵 → (𝐹‘𝑥) ∈ (-∞(,]𝐵))) |
24 | 12, 23 | impbid 212 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞(,]𝐵) ↔ (𝐹‘𝑥) ≤ 𝐵)) |
25 | 24 | rabbidva 3440 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞(,]𝐵)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≤ 𝐵}) |
26 | 4, 25 | eqtrd 2775 | 1 ⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≤ 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 class class class wbr 5148 ◡ccnv 5688 “ cima 5692 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 -∞cmnf 11291 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 (,]cioc 13385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-ioc 13389 |
This theorem is referenced by: issmfle2d 46765 |
Copyright terms: Public domain | W3C validator |