Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimaiocmnf | Structured version Visualization version GIF version |
Description: Preimage of a right-closed interval, unbounded below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
preimaiocmnf.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
preimaiocmnf.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
preimaiocmnf | ⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≤ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimaiocmnf.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
2 | 1 | ffnd 6585 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | fncnvima2 6920 | . . 3 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞(,]𝐵)}) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞(,]𝐵)}) |
5 | mnfxr 10963 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → -∞ ∈ ℝ*) |
7 | preimaiocmnf.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → 𝐵 ∈ ℝ*) |
9 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → (𝐹‘𝑥) ∈ (-∞(,]𝐵)) | |
10 | 6, 8, 9 | iocleubd 42987 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → (𝐹‘𝑥) ≤ 𝐵) |
11 | 10 | ex 412 | . . . . 5 ⊢ (𝜑 → ((𝐹‘𝑥) ∈ (-∞(,]𝐵) → (𝐹‘𝑥) ≤ 𝐵)) |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞(,]𝐵) → (𝐹‘𝑥) ≤ 𝐵)) |
13 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → -∞ ∈ ℝ*) |
14 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ≤ 𝐵) → 𝐵 ∈ ℝ*) |
15 | 14 | adantlr 711 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → 𝐵 ∈ ℝ*) |
16 | 1 | ffvelrnda 6943 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
17 | 16 | rexrd 10956 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
18 | 17 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → (𝐹‘𝑥) ∈ ℝ*) |
19 | 16 | mnfltd 12789 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ < (𝐹‘𝑥)) |
20 | 19 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → -∞ < (𝐹‘𝑥)) |
21 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → (𝐹‘𝑥) ≤ 𝐵) | |
22 | 13, 15, 18, 20, 21 | eliocd 42935 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → (𝐹‘𝑥) ∈ (-∞(,]𝐵)) |
23 | 22 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≤ 𝐵 → (𝐹‘𝑥) ∈ (-∞(,]𝐵))) |
24 | 12, 23 | impbid 211 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞(,]𝐵) ↔ (𝐹‘𝑥) ≤ 𝐵)) |
25 | 24 | rabbidva 3402 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞(,]𝐵)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≤ 𝐵}) |
26 | 4, 25 | eqtrd 2778 | 1 ⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≤ 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 class class class wbr 5070 ◡ccnv 5579 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 (,]cioc 13009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-ioc 13013 |
This theorem is referenced by: issmfle2d 44229 |
Copyright terms: Public domain | W3C validator |