Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaiocmnf Structured version   Visualization version   GIF version

Theorem preimaiocmnf 45558
Description: Preimage of a right-closed interval, unbounded below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
preimaiocmnf.1 (𝜑𝐹:𝐴⟶ℝ)
preimaiocmnf.2 (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
preimaiocmnf (𝜑 → (𝐹 “ (-∞(,]𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ≤ 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem preimaiocmnf
StepHypRef Expression
1 preimaiocmnf.1 . . . 4 (𝜑𝐹:𝐴⟶ℝ)
21ffnd 6689 . . 3 (𝜑𝐹 Fn 𝐴)
3 fncnvima2 7033 . . 3 (𝐹 Fn 𝐴 → (𝐹 “ (-∞(,]𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞(,]𝐵)})
42, 3syl 17 . 2 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞(,]𝐵)})
5 mnfxr 11231 . . . . . . . 8 -∞ ∈ ℝ*
65a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ∈ (-∞(,]𝐵)) → -∞ ∈ ℝ*)
7 preimaiocmnf.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
87adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ∈ (-∞(,]𝐵)) → 𝐵 ∈ ℝ*)
9 simpr 484 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ∈ (-∞(,]𝐵)) → (𝐹𝑥) ∈ (-∞(,]𝐵))
106, 8, 9iocleubd 45556 . . . . . 6 ((𝜑 ∧ (𝐹𝑥) ∈ (-∞(,]𝐵)) → (𝐹𝑥) ≤ 𝐵)
1110ex 412 . . . . 5 (𝜑 → ((𝐹𝑥) ∈ (-∞(,]𝐵) → (𝐹𝑥) ≤ 𝐵))
1211adantr 480 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∈ (-∞(,]𝐵) → (𝐹𝑥) ≤ 𝐵))
135a1i 11 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ≤ 𝐵) → -∞ ∈ ℝ*)
147adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ≤ 𝐵) → 𝐵 ∈ ℝ*)
1514adantlr 715 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ≤ 𝐵) → 𝐵 ∈ ℝ*)
161ffvelcdmda 7056 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1716rexrd 11224 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ*)
1817adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ≤ 𝐵) → (𝐹𝑥) ∈ ℝ*)
1916mnfltd 13084 . . . . . . 7 ((𝜑𝑥𝐴) → -∞ < (𝐹𝑥))
2019adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ≤ 𝐵) → -∞ < (𝐹𝑥))
21 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ≤ 𝐵) → (𝐹𝑥) ≤ 𝐵)
2213, 15, 18, 20, 21eliocd 45505 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ≤ 𝐵) → (𝐹𝑥) ∈ (-∞(,]𝐵))
2322ex 412 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥) ≤ 𝐵 → (𝐹𝑥) ∈ (-∞(,]𝐵)))
2412, 23impbid 212 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∈ (-∞(,]𝐵) ↔ (𝐹𝑥) ≤ 𝐵))
2524rabbidva 3412 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞(,]𝐵)} = {𝑥𝐴 ∣ (𝐹𝑥) ≤ 𝐵})
264, 25eqtrd 2764 1 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ≤ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405   class class class wbr 5107  ccnv 5637  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  (,]cioc 13307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-ioc 13311
This theorem is referenced by:  issmfle2d  46807
  Copyright terms: Public domain W3C validator