| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > preimaiocmnf | Structured version Visualization version GIF version | ||
| Description: Preimage of a right-closed interval, unbounded below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| preimaiocmnf.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| preimaiocmnf.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| preimaiocmnf | ⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≤ 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preimaiocmnf.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 2 | 1 | ffnd 6689 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | fncnvima2 7033 | . . 3 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞(,]𝐵)}) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞(,]𝐵)}) |
| 5 | mnfxr 11231 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → -∞ ∈ ℝ*) |
| 7 | preimaiocmnf.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → 𝐵 ∈ ℝ*) |
| 9 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → (𝐹‘𝑥) ∈ (-∞(,]𝐵)) | |
| 10 | 6, 8, 9 | iocleubd 45556 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → (𝐹‘𝑥) ≤ 𝐵) |
| 11 | 10 | ex 412 | . . . . 5 ⊢ (𝜑 → ((𝐹‘𝑥) ∈ (-∞(,]𝐵) → (𝐹‘𝑥) ≤ 𝐵)) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞(,]𝐵) → (𝐹‘𝑥) ≤ 𝐵)) |
| 13 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → -∞ ∈ ℝ*) |
| 14 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ≤ 𝐵) → 𝐵 ∈ ℝ*) |
| 15 | 14 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → 𝐵 ∈ ℝ*) |
| 16 | 1 | ffvelcdmda 7056 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
| 17 | 16 | rexrd 11224 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
| 18 | 17 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → (𝐹‘𝑥) ∈ ℝ*) |
| 19 | 16 | mnfltd 13084 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ < (𝐹‘𝑥)) |
| 20 | 19 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → -∞ < (𝐹‘𝑥)) |
| 21 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → (𝐹‘𝑥) ≤ 𝐵) | |
| 22 | 13, 15, 18, 20, 21 | eliocd 45505 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → (𝐹‘𝑥) ∈ (-∞(,]𝐵)) |
| 23 | 22 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≤ 𝐵 → (𝐹‘𝑥) ∈ (-∞(,]𝐵))) |
| 24 | 12, 23 | impbid 212 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞(,]𝐵) ↔ (𝐹‘𝑥) ≤ 𝐵)) |
| 25 | 24 | rabbidva 3412 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞(,]𝐵)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≤ 𝐵}) |
| 26 | 4, 25 | eqtrd 2764 | 1 ⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≤ 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 class class class wbr 5107 ◡ccnv 5637 “ cima 5641 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 (,]cioc 13307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-ioc 13311 |
| This theorem is referenced by: issmfle2d 46807 |
| Copyright terms: Public domain | W3C validator |