Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrjat Structured version   Visualization version   GIF version

Theorem 1cvrjat 36163
Description: An element covered by the lattice unit, when joined with an atom not under it, equals the lattice unit. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
1cvrjat.b 𝐵 = (Base‘𝐾)
1cvrjat.l = (le‘𝐾)
1cvrjat.j = (join‘𝐾)
1cvrjat.u 1 = (1.‘𝐾)
1cvrjat.c 𝐶 = ( ⋖ ‘𝐾)
1cvrjat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvrjat (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )

Proof of Theorem 1cvrjat
StepHypRef Expression
1 simprr 769 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ¬ 𝑃 𝑋)
2 1cvrjat.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 1cvrjat.l . . . . . . . 8 = (le‘𝐾)
4 1cvrjat.j . . . . . . . 8 = (join‘𝐾)
5 1cvrjat.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
6 1cvrjat.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
72, 3, 4, 5, 6cvr1 36098 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
87adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
91, 8mpbid 233 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐶(𝑋 𝑃))
10 simpl1 1184 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ HL)
11 hlop 36050 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
1210, 11syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ OP)
13 simpl2 1185 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐵)
1410hllatd 36052 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ Lat)
15 simpl3 1186 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐴)
162, 6atbase 35977 . . . . . . . 8 (𝑃𝐴𝑃𝐵)
1715, 16syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐵)
182, 4latjcl 17494 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) ∈ 𝐵)
1914, 13, 17, 18syl3anc 1364 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) ∈ 𝐵)
20 eqid 2797 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
212, 20, 5cvrcon3b 35965 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑃) ↔ ((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋)))
2212, 13, 19, 21syl3anc 1364 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋𝐶(𝑋 𝑃) ↔ ((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋)))
239, 22mpbid 233 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋))
24 hlatl 36048 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2510, 24syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ AtLat)
262, 20opoccl 35882 . . . . . 6 ((𝐾 ∈ OP ∧ (𝑋 𝑃) ∈ 𝐵) → ((oc‘𝐾)‘(𝑋 𝑃)) ∈ 𝐵)
2712, 19, 26syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(𝑋 𝑃)) ∈ 𝐵)
282, 20opoccl 35882 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
2912, 13, 28syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
30 eqid 2797 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
31 1cvrjat.u . . . . . . . . 9 1 = (1.‘𝐾)
3230, 31, 20opoc1 35890 . . . . . . . 8 (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
3310, 11, 323syl 18 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
34 simprl 767 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐶 1 )
352, 31op1cl 35873 . . . . . . . . . 10 (𝐾 ∈ OP → 1𝐵)
3610, 11, 353syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 1𝐵)
372, 20, 5cvrcon3b 35965 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑋𝐵1𝐵) → (𝑋𝐶 1 ↔ ((oc‘𝐾)‘ 1 )𝐶((oc‘𝐾)‘𝑋)))
3812, 13, 36, 37syl3anc 1364 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋𝐶 1 ↔ ((oc‘𝐾)‘ 1 )𝐶((oc‘𝐾)‘𝑋)))
3934, 38mpbid 233 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘ 1 )𝐶((oc‘𝐾)‘𝑋))
4033, 39eqbrtrrd 4992 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (0.‘𝐾)𝐶((oc‘𝐾)‘𝑋))
412, 30, 5, 6isat 35974 . . . . . . 7 (𝐾 ∈ HL → (((oc‘𝐾)‘𝑋) ∈ 𝐴 ↔ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶((oc‘𝐾)‘𝑋))))
4210, 41syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (((oc‘𝐾)‘𝑋) ∈ 𝐴 ↔ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶((oc‘𝐾)‘𝑋))))
4329, 40, 42mpbir2and 709 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘𝑋) ∈ 𝐴)
442, 3, 30, 5, 6atcvreq0 36002 . . . . 5 ((𝐾 ∈ AtLat ∧ ((oc‘𝐾)‘(𝑋 𝑃)) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐴) → (((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋) ↔ ((oc‘𝐾)‘(𝑋 𝑃)) = (0.‘𝐾)))
4525, 27, 43, 44syl3anc 1364 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋) ↔ ((oc‘𝐾)‘(𝑋 𝑃)) = (0.‘𝐾)))
4623, 45mpbid 233 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(𝑋 𝑃)) = (0.‘𝐾))
4746fveq2d 6549 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑋 𝑃))) = ((oc‘𝐾)‘(0.‘𝐾)))
482, 20opococ 35883 . . 3 ((𝐾 ∈ OP ∧ (𝑋 𝑃) ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑋 𝑃))) = (𝑋 𝑃))
4912, 19, 48syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑋 𝑃))) = (𝑋 𝑃))
5030, 31, 20opoc0 35891 . . 3 (𝐾 ∈ OP → ((oc‘𝐾)‘(0.‘𝐾)) = 1 )
5110, 11, 503syl 18 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(0.‘𝐾)) = 1 )
5247, 49, 513eqtr3d 2841 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083   class class class wbr 4968  cfv 6232  (class class class)co 7023  Basecbs 16316  lecple 16405  occoc 16406  joincjn 17387  0.cp0 17480  1.cp1 17481  Latclat 17488  OPcops 35860  ccvr 35950  Atomscatm 35951  AtLatcal 35952  HLchlt 36038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-proset 17371  df-poset 17389  df-plt 17401  df-lub 17417  df-glb 17418  df-join 17419  df-meet 17420  df-p0 17482  df-p1 17483  df-lat 17489  df-clat 17551  df-oposet 35864  df-ol 35866  df-oml 35867  df-covers 35954  df-ats 35955  df-atl 35986  df-cvlat 36010  df-hlat 36039
This theorem is referenced by:  1cvrat  36164  lhpjat1  36708
  Copyright terms: Public domain W3C validator