Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrjat Structured version   Visualization version   GIF version

Theorem 1cvrjat 39499
Description: An element covered by the lattice unity, when joined with an atom not under it, equals the lattice unity. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
1cvrjat.b 𝐵 = (Base‘𝐾)
1cvrjat.l = (le‘𝐾)
1cvrjat.j = (join‘𝐾)
1cvrjat.u 1 = (1.‘𝐾)
1cvrjat.c 𝐶 = ( ⋖ ‘𝐾)
1cvrjat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvrjat (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )

Proof of Theorem 1cvrjat
StepHypRef Expression
1 simprr 772 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ¬ 𝑃 𝑋)
2 1cvrjat.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 1cvrjat.l . . . . . . . 8 = (le‘𝐾)
4 1cvrjat.j . . . . . . . 8 = (join‘𝐾)
5 1cvrjat.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
6 1cvrjat.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
72, 3, 4, 5, 6cvr1 39434 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
87adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
91, 8mpbid 232 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐶(𝑋 𝑃))
10 simpl1 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ HL)
11 hlop 39385 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
1210, 11syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ OP)
13 simpl2 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐵)
1410hllatd 39387 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ Lat)
15 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐴)
162, 6atbase 39312 . . . . . . . 8 (𝑃𝐴𝑃𝐵)
1715, 16syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐵)
182, 4latjcl 18454 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) ∈ 𝐵)
1914, 13, 17, 18syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) ∈ 𝐵)
20 eqid 2736 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
212, 20, 5cvrcon3b 39300 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑃) ↔ ((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋)))
2212, 13, 19, 21syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋𝐶(𝑋 𝑃) ↔ ((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋)))
239, 22mpbid 232 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋))
24 hlatl 39383 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2510, 24syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ AtLat)
262, 20opoccl 39217 . . . . . 6 ((𝐾 ∈ OP ∧ (𝑋 𝑃) ∈ 𝐵) → ((oc‘𝐾)‘(𝑋 𝑃)) ∈ 𝐵)
2712, 19, 26syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(𝑋 𝑃)) ∈ 𝐵)
282, 20opoccl 39217 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
2912, 13, 28syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
30 eqid 2736 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
31 1cvrjat.u . . . . . . . . 9 1 = (1.‘𝐾)
3230, 31, 20opoc1 39225 . . . . . . . 8 (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
3310, 11, 323syl 18 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
34 simprl 770 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐶 1 )
352, 31op1cl 39208 . . . . . . . . . 10 (𝐾 ∈ OP → 1𝐵)
3610, 11, 353syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 1𝐵)
372, 20, 5cvrcon3b 39300 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑋𝐵1𝐵) → (𝑋𝐶 1 ↔ ((oc‘𝐾)‘ 1 )𝐶((oc‘𝐾)‘𝑋)))
3812, 13, 36, 37syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋𝐶 1 ↔ ((oc‘𝐾)‘ 1 )𝐶((oc‘𝐾)‘𝑋)))
3934, 38mpbid 232 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘ 1 )𝐶((oc‘𝐾)‘𝑋))
4033, 39eqbrtrrd 5148 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (0.‘𝐾)𝐶((oc‘𝐾)‘𝑋))
412, 30, 5, 6isat 39309 . . . . . . 7 (𝐾 ∈ HL → (((oc‘𝐾)‘𝑋) ∈ 𝐴 ↔ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶((oc‘𝐾)‘𝑋))))
4210, 41syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (((oc‘𝐾)‘𝑋) ∈ 𝐴 ↔ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶((oc‘𝐾)‘𝑋))))
4329, 40, 42mpbir2and 713 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘𝑋) ∈ 𝐴)
442, 3, 30, 5, 6atcvreq0 39337 . . . . 5 ((𝐾 ∈ AtLat ∧ ((oc‘𝐾)‘(𝑋 𝑃)) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐴) → (((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋) ↔ ((oc‘𝐾)‘(𝑋 𝑃)) = (0.‘𝐾)))
4525, 27, 43, 44syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋) ↔ ((oc‘𝐾)‘(𝑋 𝑃)) = (0.‘𝐾)))
4623, 45mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(𝑋 𝑃)) = (0.‘𝐾))
4746fveq2d 6885 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑋 𝑃))) = ((oc‘𝐾)‘(0.‘𝐾)))
482, 20opococ 39218 . . 3 ((𝐾 ∈ OP ∧ (𝑋 𝑃) ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑋 𝑃))) = (𝑋 𝑃))
4912, 19, 48syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑋 𝑃))) = (𝑋 𝑃))
5030, 31, 20opoc0 39226 . . 3 (𝐾 ∈ OP → ((oc‘𝐾)‘(0.‘𝐾)) = 1 )
5110, 11, 503syl 18 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(0.‘𝐾)) = 1 )
5247, 49, 513eqtr3d 2779 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  occoc 17284  joincjn 18328  0.cp0 18438  1.cp1 18439  Latclat 18446  OPcops 39195  ccvr 39285  Atomscatm 39286  AtLatcal 39287  HLchlt 39373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374
This theorem is referenced by:  1cvrat  39500  lhpjat1  40044
  Copyright terms: Public domain W3C validator