Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrjat Structured version   Visualization version   GIF version

Theorem 1cvrjat 38252
Description: An element covered by the lattice unity, when joined with an atom not under it, equals the lattice unity. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
1cvrjat.b 𝐵 = (Base‘𝐾)
1cvrjat.l = (le‘𝐾)
1cvrjat.j = (join‘𝐾)
1cvrjat.u 1 = (1.‘𝐾)
1cvrjat.c 𝐶 = ( ⋖ ‘𝐾)
1cvrjat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvrjat (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )

Proof of Theorem 1cvrjat
StepHypRef Expression
1 simprr 772 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ¬ 𝑃 𝑋)
2 1cvrjat.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 1cvrjat.l . . . . . . . 8 = (le‘𝐾)
4 1cvrjat.j . . . . . . . 8 = (join‘𝐾)
5 1cvrjat.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
6 1cvrjat.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
72, 3, 4, 5, 6cvr1 38187 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
87adantr 482 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
91, 8mpbid 231 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐶(𝑋 𝑃))
10 simpl1 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ HL)
11 hlop 38138 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
1210, 11syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ OP)
13 simpl2 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐵)
1410hllatd 38140 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ Lat)
15 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐴)
162, 6atbase 38065 . . . . . . . 8 (𝑃𝐴𝑃𝐵)
1715, 16syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑃𝐵)
182, 4latjcl 18379 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) ∈ 𝐵)
1914, 13, 17, 18syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) ∈ 𝐵)
20 eqid 2733 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
212, 20, 5cvrcon3b 38053 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑃) ↔ ((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋)))
2212, 13, 19, 21syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋𝐶(𝑋 𝑃) ↔ ((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋)))
239, 22mpbid 231 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋))
24 hlatl 38136 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2510, 24syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝐾 ∈ AtLat)
262, 20opoccl 37970 . . . . . 6 ((𝐾 ∈ OP ∧ (𝑋 𝑃) ∈ 𝐵) → ((oc‘𝐾)‘(𝑋 𝑃)) ∈ 𝐵)
2712, 19, 26syl2anc 585 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(𝑋 𝑃)) ∈ 𝐵)
282, 20opoccl 37970 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
2912, 13, 28syl2anc 585 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
30 eqid 2733 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
31 1cvrjat.u . . . . . . . . 9 1 = (1.‘𝐾)
3230, 31, 20opoc1 37978 . . . . . . . 8 (𝐾 ∈ OP → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
3310, 11, 323syl 18 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘ 1 ) = (0.‘𝐾))
34 simprl 770 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 𝑋𝐶 1 )
352, 31op1cl 37961 . . . . . . . . . 10 (𝐾 ∈ OP → 1𝐵)
3610, 11, 353syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → 1𝐵)
372, 20, 5cvrcon3b 38053 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑋𝐵1𝐵) → (𝑋𝐶 1 ↔ ((oc‘𝐾)‘ 1 )𝐶((oc‘𝐾)‘𝑋)))
3812, 13, 36, 37syl3anc 1372 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋𝐶 1 ↔ ((oc‘𝐾)‘ 1 )𝐶((oc‘𝐾)‘𝑋)))
3934, 38mpbid 231 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘ 1 )𝐶((oc‘𝐾)‘𝑋))
4033, 39eqbrtrrd 5168 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (0.‘𝐾)𝐶((oc‘𝐾)‘𝑋))
412, 30, 5, 6isat 38062 . . . . . . 7 (𝐾 ∈ HL → (((oc‘𝐾)‘𝑋) ∈ 𝐴 ↔ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶((oc‘𝐾)‘𝑋))))
4210, 41syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (((oc‘𝐾)‘𝑋) ∈ 𝐴 ↔ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶((oc‘𝐾)‘𝑋))))
4329, 40, 42mpbir2and 712 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘𝑋) ∈ 𝐴)
442, 3, 30, 5, 6atcvreq0 38090 . . . . 5 ((𝐾 ∈ AtLat ∧ ((oc‘𝐾)‘(𝑋 𝑃)) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐴) → (((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋) ↔ ((oc‘𝐾)‘(𝑋 𝑃)) = (0.‘𝐾)))
4525, 27, 43, 44syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (((oc‘𝐾)‘(𝑋 𝑃))𝐶((oc‘𝐾)‘𝑋) ↔ ((oc‘𝐾)‘(𝑋 𝑃)) = (0.‘𝐾)))
4623, 45mpbid 231 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(𝑋 𝑃)) = (0.‘𝐾))
4746fveq2d 6885 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑋 𝑃))) = ((oc‘𝐾)‘(0.‘𝐾)))
482, 20opococ 37971 . . 3 ((𝐾 ∈ OP ∧ (𝑋 𝑃) ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑋 𝑃))) = (𝑋 𝑃))
4912, 19, 48syl2anc 585 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑋 𝑃))) = (𝑋 𝑃))
5030, 31, 20opoc0 37979 . . 3 (𝐾 ∈ OP → ((oc‘𝐾)‘(0.‘𝐾)) = 1 )
5110, 11, 503syl 18 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → ((oc‘𝐾)‘(0.‘𝐾)) = 1 )
5247, 49, 513eqtr3d 2781 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 𝑋)) → (𝑋 𝑃) = 1 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5144  cfv 6535  (class class class)co 7396  Basecbs 17131  lecple 17191  occoc 17192  joincjn 18251  0.cp0 18363  1.cp1 18364  Latclat 18371  OPcops 37948  ccvr 38038  Atomscatm 38039  AtLatcal 38040  HLchlt 38126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-proset 18235  df-poset 18253  df-plt 18270  df-lub 18286  df-glb 18287  df-join 18288  df-meet 18289  df-p0 18365  df-p1 18366  df-lat 18372  df-clat 18439  df-oposet 37952  df-ol 37954  df-oml 37955  df-covers 38042  df-ats 38043  df-atl 38074  df-cvlat 38098  df-hlat 38127
This theorem is referenced by:  1cvrat  38253  lhpjat1  38797
  Copyright terms: Public domain W3C validator