Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrco Structured version   Visualization version   GIF version

Theorem 1cvrco 36787
 Description: The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.)
Hypotheses
Ref Expression
1cvrco.b 𝐵 = (Base‘𝐾)
1cvrco.u 1 = (1.‘𝐾)
1cvrco.o = (oc‘𝐾)
1cvrco.c 𝐶 = ( ⋖ ‘𝐾)
1cvrco.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvrco ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ( 𝑋) ∈ 𝐴))

Proof of Theorem 1cvrco
StepHypRef Expression
1 hlop 36677 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
21adantr 484 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
3 simpr 488 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝑋𝐵)
4 1cvrco.b . . . . . 6 𝐵 = (Base‘𝐾)
5 1cvrco.u . . . . . 6 1 = (1.‘𝐾)
64, 5op1cl 36500 . . . . 5 (𝐾 ∈ OP → 1𝐵)
72, 6syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 1𝐵)
8 1cvrco.o . . . . 5 = (oc‘𝐾)
9 1cvrco.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
104, 8, 9cvrcon3b 36592 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵1𝐵) → (𝑋𝐶 1 ↔ ( 1 )𝐶( 𝑋)))
112, 3, 7, 10syl3anc 1368 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ( 1 )𝐶( 𝑋)))
12 eqid 2798 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
1312, 5, 8opoc1 36517 . . . . 5 (𝐾 ∈ OP → ( 1 ) = (0.‘𝐾))
142, 13syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( 1 ) = (0.‘𝐾))
1514breq1d 5041 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (( 1 )𝐶( 𝑋) ↔ (0.‘𝐾)𝐶( 𝑋)))
164, 8opoccl 36509 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
171, 16sylan 583 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
1817biantrurd 536 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((0.‘𝐾)𝐶( 𝑋) ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
1911, 15, 183bitrd 308 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
20 1cvrco.a . . . 4 𝐴 = (Atoms‘𝐾)
214, 12, 9, 20isat 36601 . . 3 (𝐾 ∈ HL → (( 𝑋) ∈ 𝐴 ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
2221adantr 484 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (( 𝑋) ∈ 𝐴 ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
2319, 22bitr4d 285 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ( 𝑋) ∈ 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   class class class wbr 5031  ‘cfv 6325  Basecbs 16478  occoc 16568  0.cp0 17642  1.cp1 17643  OPcops 36487   ⋖ ccvr 36577  Atomscatm 36578  HLchlt 36665 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-p0 17644  df-p1 17645  df-oposet 36491  df-ol 36493  df-oml 36494  df-covers 36581  df-ats 36582  df-hlat 36666 This theorem is referenced by:  1cvratex  36788  lhpoc  37329
 Copyright terms: Public domain W3C validator