![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cvrco | Structured version Visualization version GIF version |
Description: The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.) |
Ref | Expression |
---|---|
1cvrco.b | ⊢ 𝐵 = (Base‘𝐾) |
1cvrco.u | ⊢ 1 = (1.‘𝐾) |
1cvrco.o | ⊢ ⊥ = (oc‘𝐾) |
1cvrco.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
1cvrco.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
1cvrco | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlop 39318 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
3 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
4 | 1cvrco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | 1cvrco.u | . . . . . 6 ⊢ 1 = (1.‘𝐾) | |
6 | 4, 5 | op1cl 39141 | . . . . 5 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
7 | 2, 6 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 1 ∈ 𝐵) |
8 | 1cvrco.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
9 | 1cvrco.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
10 | 4, 8, 9 | cvrcon3b 39233 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘ 1 )𝐶( ⊥ ‘𝑋))) |
11 | 2, 3, 7, 10 | syl3anc 1371 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘ 1 )𝐶( ⊥ ‘𝑋))) |
12 | eqid 2740 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
13 | 12, 5, 8 | opoc1 39158 | . . . . 5 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = (0.‘𝐾)) |
14 | 2, 13 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘ 1 ) = (0.‘𝐾)) |
15 | 14 | breq1d 5176 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘ 1 )𝐶( ⊥ ‘𝑋) ↔ (0.‘𝐾)𝐶( ⊥ ‘𝑋))) |
16 | 4, 8 | opoccl 39150 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
17 | 1, 16 | sylan 579 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
18 | 17 | biantrurd 532 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((0.‘𝐾)𝐶( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
19 | 11, 15, 18 | 3bitrd 305 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
20 | 1cvrco.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
21 | 4, 12, 9, 20 | isat 39242 | . . 3 ⊢ (𝐾 ∈ HL → (( ⊥ ‘𝑋) ∈ 𝐴 ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
22 | 21 | adantr 480 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐴 ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
23 | 19, 22 | bitr4d 282 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 occoc 17319 0.cp0 18493 1.cp1 18494 OPcops 39128 ⋖ ccvr 39218 Atomscatm 39219 HLchlt 39306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-p0 18495 df-p1 18496 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-hlat 39307 |
This theorem is referenced by: 1cvratex 39430 lhpoc 39971 |
Copyright terms: Public domain | W3C validator |