![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cvrco | Structured version Visualization version GIF version |
Description: The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.) |
Ref | Expression |
---|---|
1cvrco.b | ⊢ 𝐵 = (Base‘𝐾) |
1cvrco.u | ⊢ 1 = (1.‘𝐾) |
1cvrco.o | ⊢ ⊥ = (oc‘𝐾) |
1cvrco.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
1cvrco.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
1cvrco | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlop 39344 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
3 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
4 | 1cvrco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | 1cvrco.u | . . . . . 6 ⊢ 1 = (1.‘𝐾) | |
6 | 4, 5 | op1cl 39167 | . . . . 5 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
7 | 2, 6 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 1 ∈ 𝐵) |
8 | 1cvrco.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
9 | 1cvrco.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
10 | 4, 8, 9 | cvrcon3b 39259 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘ 1 )𝐶( ⊥ ‘𝑋))) |
11 | 2, 3, 7, 10 | syl3anc 1370 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘ 1 )𝐶( ⊥ ‘𝑋))) |
12 | eqid 2735 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
13 | 12, 5, 8 | opoc1 39184 | . . . . 5 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = (0.‘𝐾)) |
14 | 2, 13 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘ 1 ) = (0.‘𝐾)) |
15 | 14 | breq1d 5158 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘ 1 )𝐶( ⊥ ‘𝑋) ↔ (0.‘𝐾)𝐶( ⊥ ‘𝑋))) |
16 | 4, 8 | opoccl 39176 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
17 | 1, 16 | sylan 580 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
18 | 17 | biantrurd 532 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((0.‘𝐾)𝐶( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
19 | 11, 15, 18 | 3bitrd 305 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
20 | 1cvrco.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
21 | 4, 12, 9, 20 | isat 39268 | . . 3 ⊢ (𝐾 ∈ HL → (( ⊥ ‘𝑋) ∈ 𝐴 ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
22 | 21 | adantr 480 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐴 ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
23 | 19, 22 | bitr4d 282 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 occoc 17306 0.cp0 18481 1.cp1 18482 OPcops 39154 ⋖ ccvr 39244 Atomscatm 39245 HLchlt 39332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-p0 18483 df-p1 18484 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-hlat 39333 |
This theorem is referenced by: 1cvratex 39456 lhpoc 39997 |
Copyright terms: Public domain | W3C validator |