Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrco Structured version   Visualization version   GIF version

Theorem 1cvrco 39474
Description: The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.)
Hypotheses
Ref Expression
1cvrco.b 𝐵 = (Base‘𝐾)
1cvrco.u 1 = (1.‘𝐾)
1cvrco.o = (oc‘𝐾)
1cvrco.c 𝐶 = ( ⋖ ‘𝐾)
1cvrco.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvrco ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ( 𝑋) ∈ 𝐴))

Proof of Theorem 1cvrco
StepHypRef Expression
1 hlop 39363 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
21adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
3 simpr 484 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝑋𝐵)
4 1cvrco.b . . . . . 6 𝐵 = (Base‘𝐾)
5 1cvrco.u . . . . . 6 1 = (1.‘𝐾)
64, 5op1cl 39186 . . . . 5 (𝐾 ∈ OP → 1𝐵)
72, 6syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 1𝐵)
8 1cvrco.o . . . . 5 = (oc‘𝐾)
9 1cvrco.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
104, 8, 9cvrcon3b 39278 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵1𝐵) → (𝑋𝐶 1 ↔ ( 1 )𝐶( 𝑋)))
112, 3, 7, 10syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ( 1 )𝐶( 𝑋)))
12 eqid 2737 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
1312, 5, 8opoc1 39203 . . . . 5 (𝐾 ∈ OP → ( 1 ) = (0.‘𝐾))
142, 13syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( 1 ) = (0.‘𝐾))
1514breq1d 5153 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (( 1 )𝐶( 𝑋) ↔ (0.‘𝐾)𝐶( 𝑋)))
164, 8opoccl 39195 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
171, 16sylan 580 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
1817biantrurd 532 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((0.‘𝐾)𝐶( 𝑋) ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
1911, 15, 183bitrd 305 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
20 1cvrco.a . . . 4 𝐴 = (Atoms‘𝐾)
214, 12, 9, 20isat 39287 . . 3 (𝐾 ∈ HL → (( 𝑋) ∈ 𝐴 ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
2221adantr 480 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (( 𝑋) ∈ 𝐴 ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
2319, 22bitr4d 282 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ( 𝑋) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  Basecbs 17247  occoc 17305  0.cp0 18468  1.cp1 18469  OPcops 39173  ccvr 39263  Atomscatm 39264  HLchlt 39351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-p0 18470  df-p1 18471  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-hlat 39352
This theorem is referenced by:  1cvratex  39475  lhpoc  40016
  Copyright terms: Public domain W3C validator