Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrco Structured version   Visualization version   GIF version

Theorem 1cvrco 39455
Description: The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.)
Hypotheses
Ref Expression
1cvrco.b 𝐵 = (Base‘𝐾)
1cvrco.u 1 = (1.‘𝐾)
1cvrco.o = (oc‘𝐾)
1cvrco.c 𝐶 = ( ⋖ ‘𝐾)
1cvrco.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvrco ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ( 𝑋) ∈ 𝐴))

Proof of Theorem 1cvrco
StepHypRef Expression
1 hlop 39345 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
21adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
3 simpr 484 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝑋𝐵)
4 1cvrco.b . . . . . 6 𝐵 = (Base‘𝐾)
5 1cvrco.u . . . . . 6 1 = (1.‘𝐾)
64, 5op1cl 39168 . . . . 5 (𝐾 ∈ OP → 1𝐵)
72, 6syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 1𝐵)
8 1cvrco.o . . . . 5 = (oc‘𝐾)
9 1cvrco.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
104, 8, 9cvrcon3b 39260 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵1𝐵) → (𝑋𝐶 1 ↔ ( 1 )𝐶( 𝑋)))
112, 3, 7, 10syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ( 1 )𝐶( 𝑋)))
12 eqid 2729 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
1312, 5, 8opoc1 39185 . . . . 5 (𝐾 ∈ OP → ( 1 ) = (0.‘𝐾))
142, 13syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( 1 ) = (0.‘𝐾))
1514breq1d 5102 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (( 1 )𝐶( 𝑋) ↔ (0.‘𝐾)𝐶( 𝑋)))
164, 8opoccl 39177 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
171, 16sylan 580 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
1817biantrurd 532 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((0.‘𝐾)𝐶( 𝑋) ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
1911, 15, 183bitrd 305 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
20 1cvrco.a . . . 4 𝐴 = (Atoms‘𝐾)
214, 12, 9, 20isat 39269 . . 3 (𝐾 ∈ HL → (( 𝑋) ∈ 𝐴 ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
2221adantr 480 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (( 𝑋) ∈ 𝐴 ↔ (( 𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( 𝑋))))
2319, 22bitr4d 282 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ( 𝑋) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  Basecbs 17120  occoc 17169  0.cp0 18327  1.cp1 18328  OPcops 39155  ccvr 39245  Atomscatm 39246  HLchlt 39333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-p0 18329  df-p1 18330  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-hlat 39334
This theorem is referenced by:  1cvratex  39456  lhpoc  39997
  Copyright terms: Public domain W3C validator