| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cvrco | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.) |
| Ref | Expression |
|---|---|
| 1cvrco.b | ⊢ 𝐵 = (Base‘𝐾) |
| 1cvrco.u | ⊢ 1 = (1.‘𝐾) |
| 1cvrco.o | ⊢ ⊥ = (oc‘𝐾) |
| 1cvrco.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| 1cvrco.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| 1cvrco | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlop 39355 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 4 | 1cvrco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | 1cvrco.u | . . . . . 6 ⊢ 1 = (1.‘𝐾) | |
| 6 | 4, 5 | op1cl 39178 | . . . . 5 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| 7 | 2, 6 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 1 ∈ 𝐵) |
| 8 | 1cvrco.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 9 | 1cvrco.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 10 | 4, 8, 9 | cvrcon3b 39270 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘ 1 )𝐶( ⊥ ‘𝑋))) |
| 11 | 2, 3, 7, 10 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘ 1 )𝐶( ⊥ ‘𝑋))) |
| 12 | eqid 2729 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 13 | 12, 5, 8 | opoc1 39195 | . . . . 5 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = (0.‘𝐾)) |
| 14 | 2, 13 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘ 1 ) = (0.‘𝐾)) |
| 15 | 14 | breq1d 5117 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘ 1 )𝐶( ⊥ ‘𝑋) ↔ (0.‘𝐾)𝐶( ⊥ ‘𝑋))) |
| 16 | 4, 8 | opoccl 39187 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 17 | 1, 16 | sylan 580 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 18 | 17 | biantrurd 532 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((0.‘𝐾)𝐶( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
| 19 | 11, 15, 18 | 3bitrd 305 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
| 20 | 1cvrco.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 21 | 4, 12, 9, 20 | isat 39279 | . . 3 ⊢ (𝐾 ∈ HL → (( ⊥ ‘𝑋) ∈ 𝐴 ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
| 22 | 21 | adantr 480 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐴 ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
| 23 | 19, 22 | bitr4d 282 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 occoc 17228 0.cp0 18382 1.cp1 18383 OPcops 39165 ⋖ ccvr 39255 Atomscatm 39256 HLchlt 39343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-p0 18384 df-p1 18385 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-hlat 39344 |
| This theorem is referenced by: 1cvratex 39467 lhpoc 40008 |
| Copyright terms: Public domain | W3C validator |