![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cvrco | Structured version Visualization version GIF version |
Description: The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.) |
Ref | Expression |
---|---|
1cvrco.b | β’ π΅ = (BaseβπΎ) |
1cvrco.u | β’ 1 = (1.βπΎ) |
1cvrco.o | β’ β₯ = (ocβπΎ) |
1cvrco.c | β’ πΆ = ( β βπΎ) |
1cvrco.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
1cvrco | β’ ((πΎ β HL β§ π β π΅) β (ππΆ 1 β ( β₯ βπ) β π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlop 38743 | . . . . 5 β’ (πΎ β HL β πΎ β OP) | |
2 | 1 | adantr 480 | . . . 4 β’ ((πΎ β HL β§ π β π΅) β πΎ β OP) |
3 | simpr 484 | . . . 4 β’ ((πΎ β HL β§ π β π΅) β π β π΅) | |
4 | 1cvrco.b | . . . . . 6 β’ π΅ = (BaseβπΎ) | |
5 | 1cvrco.u | . . . . . 6 β’ 1 = (1.βπΎ) | |
6 | 4, 5 | op1cl 38566 | . . . . 5 β’ (πΎ β OP β 1 β π΅) |
7 | 2, 6 | syl 17 | . . . 4 β’ ((πΎ β HL β§ π β π΅) β 1 β π΅) |
8 | 1cvrco.o | . . . . 5 β’ β₯ = (ocβπΎ) | |
9 | 1cvrco.c | . . . . 5 β’ πΆ = ( β βπΎ) | |
10 | 4, 8, 9 | cvrcon3b 38658 | . . . 4 β’ ((πΎ β OP β§ π β π΅ β§ 1 β π΅) β (ππΆ 1 β ( β₯ β 1 )πΆ( β₯ βπ))) |
11 | 2, 3, 7, 10 | syl3anc 1368 | . . 3 β’ ((πΎ β HL β§ π β π΅) β (ππΆ 1 β ( β₯ β 1 )πΆ( β₯ βπ))) |
12 | eqid 2726 | . . . . . 6 β’ (0.βπΎ) = (0.βπΎ) | |
13 | 12, 5, 8 | opoc1 38583 | . . . . 5 β’ (πΎ β OP β ( β₯ β 1 ) = (0.βπΎ)) |
14 | 2, 13 | syl 17 | . . . 4 β’ ((πΎ β HL β§ π β π΅) β ( β₯ β 1 ) = (0.βπΎ)) |
15 | 14 | breq1d 5151 | . . 3 β’ ((πΎ β HL β§ π β π΅) β (( β₯ β 1 )πΆ( β₯ βπ) β (0.βπΎ)πΆ( β₯ βπ))) |
16 | 4, 8 | opoccl 38575 | . . . . 5 β’ ((πΎ β OP β§ π β π΅) β ( β₯ βπ) β π΅) |
17 | 1, 16 | sylan 579 | . . . 4 β’ ((πΎ β HL β§ π β π΅) β ( β₯ βπ) β π΅) |
18 | 17 | biantrurd 532 | . . 3 β’ ((πΎ β HL β§ π β π΅) β ((0.βπΎ)πΆ( β₯ βπ) β (( β₯ βπ) β π΅ β§ (0.βπΎ)πΆ( β₯ βπ)))) |
19 | 11, 15, 18 | 3bitrd 305 | . 2 β’ ((πΎ β HL β§ π β π΅) β (ππΆ 1 β (( β₯ βπ) β π΅ β§ (0.βπΎ)πΆ( β₯ βπ)))) |
20 | 1cvrco.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
21 | 4, 12, 9, 20 | isat 38667 | . . 3 β’ (πΎ β HL β (( β₯ βπ) β π΄ β (( β₯ βπ) β π΅ β§ (0.βπΎ)πΆ( β₯ βπ)))) |
22 | 21 | adantr 480 | . 2 β’ ((πΎ β HL β§ π β π΅) β (( β₯ βπ) β π΄ β (( β₯ βπ) β π΅ β§ (0.βπΎ)πΆ( β₯ βπ)))) |
23 | 19, 22 | bitr4d 282 | 1 β’ ((πΎ β HL β§ π β π΅) β (ππΆ 1 β ( β₯ βπ) β π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 class class class wbr 5141 βcfv 6536 Basecbs 17151 occoc 17212 0.cp0 18386 1.cp1 18387 OPcops 38553 β ccvr 38643 Atomscatm 38644 HLchlt 38731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-p0 18388 df-p1 18389 df-oposet 38557 df-ol 38559 df-oml 38560 df-covers 38647 df-ats 38648 df-hlat 38732 |
This theorem is referenced by: 1cvratex 38855 lhpoc 39396 |
Copyright terms: Public domain | W3C validator |