![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cvrco | Structured version Visualization version GIF version |
Description: The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.) |
Ref | Expression |
---|---|
1cvrco.b | β’ π΅ = (BaseβπΎ) |
1cvrco.u | β’ 1 = (1.βπΎ) |
1cvrco.o | β’ β₯ = (ocβπΎ) |
1cvrco.c | β’ πΆ = ( β βπΎ) |
1cvrco.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
1cvrco | β’ ((πΎ β HL β§ π β π΅) β (ππΆ 1 β ( β₯ βπ) β π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlop 38220 | . . . . 5 β’ (πΎ β HL β πΎ β OP) | |
2 | 1 | adantr 481 | . . . 4 β’ ((πΎ β HL β§ π β π΅) β πΎ β OP) |
3 | simpr 485 | . . . 4 β’ ((πΎ β HL β§ π β π΅) β π β π΅) | |
4 | 1cvrco.b | . . . . . 6 β’ π΅ = (BaseβπΎ) | |
5 | 1cvrco.u | . . . . . 6 β’ 1 = (1.βπΎ) | |
6 | 4, 5 | op1cl 38043 | . . . . 5 β’ (πΎ β OP β 1 β π΅) |
7 | 2, 6 | syl 17 | . . . 4 β’ ((πΎ β HL β§ π β π΅) β 1 β π΅) |
8 | 1cvrco.o | . . . . 5 β’ β₯ = (ocβπΎ) | |
9 | 1cvrco.c | . . . . 5 β’ πΆ = ( β βπΎ) | |
10 | 4, 8, 9 | cvrcon3b 38135 | . . . 4 β’ ((πΎ β OP β§ π β π΅ β§ 1 β π΅) β (ππΆ 1 β ( β₯ β 1 )πΆ( β₯ βπ))) |
11 | 2, 3, 7, 10 | syl3anc 1371 | . . 3 β’ ((πΎ β HL β§ π β π΅) β (ππΆ 1 β ( β₯ β 1 )πΆ( β₯ βπ))) |
12 | eqid 2732 | . . . . . 6 β’ (0.βπΎ) = (0.βπΎ) | |
13 | 12, 5, 8 | opoc1 38060 | . . . . 5 β’ (πΎ β OP β ( β₯ β 1 ) = (0.βπΎ)) |
14 | 2, 13 | syl 17 | . . . 4 β’ ((πΎ β HL β§ π β π΅) β ( β₯ β 1 ) = (0.βπΎ)) |
15 | 14 | breq1d 5157 | . . 3 β’ ((πΎ β HL β§ π β π΅) β (( β₯ β 1 )πΆ( β₯ βπ) β (0.βπΎ)πΆ( β₯ βπ))) |
16 | 4, 8 | opoccl 38052 | . . . . 5 β’ ((πΎ β OP β§ π β π΅) β ( β₯ βπ) β π΅) |
17 | 1, 16 | sylan 580 | . . . 4 β’ ((πΎ β HL β§ π β π΅) β ( β₯ βπ) β π΅) |
18 | 17 | biantrurd 533 | . . 3 β’ ((πΎ β HL β§ π β π΅) β ((0.βπΎ)πΆ( β₯ βπ) β (( β₯ βπ) β π΅ β§ (0.βπΎ)πΆ( β₯ βπ)))) |
19 | 11, 15, 18 | 3bitrd 304 | . 2 β’ ((πΎ β HL β§ π β π΅) β (ππΆ 1 β (( β₯ βπ) β π΅ β§ (0.βπΎ)πΆ( β₯ βπ)))) |
20 | 1cvrco.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
21 | 4, 12, 9, 20 | isat 38144 | . . 3 β’ (πΎ β HL β (( β₯ βπ) β π΄ β (( β₯ βπ) β π΅ β§ (0.βπΎ)πΆ( β₯ βπ)))) |
22 | 21 | adantr 481 | . 2 β’ ((πΎ β HL β§ π β π΅) β (( β₯ βπ) β π΄ β (( β₯ βπ) β π΅ β§ (0.βπΎ)πΆ( β₯ βπ)))) |
23 | 19, 22 | bitr4d 281 | 1 β’ ((πΎ β HL β§ π β π΅) β (ππΆ 1 β ( β₯ βπ) β π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 class class class wbr 5147 βcfv 6540 Basecbs 17140 occoc 17201 0.cp0 18372 1.cp1 18373 OPcops 38030 β ccvr 38120 Atomscatm 38121 HLchlt 38208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-p0 18374 df-p1 18375 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-hlat 38209 |
This theorem is referenced by: 1cvratex 38332 lhpoc 38873 |
Copyright terms: Public domain | W3C validator |