| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cvrco | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.) |
| Ref | Expression |
|---|---|
| 1cvrco.b | ⊢ 𝐵 = (Base‘𝐾) |
| 1cvrco.u | ⊢ 1 = (1.‘𝐾) |
| 1cvrco.o | ⊢ ⊥ = (oc‘𝐾) |
| 1cvrco.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| 1cvrco.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| 1cvrco | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlop 39471 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 4 | 1cvrco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | 1cvrco.u | . . . . . 6 ⊢ 1 = (1.‘𝐾) | |
| 6 | 4, 5 | op1cl 39294 | . . . . 5 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| 7 | 2, 6 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 1 ∈ 𝐵) |
| 8 | 1cvrco.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 9 | 1cvrco.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 10 | 4, 8, 9 | cvrcon3b 39386 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘ 1 )𝐶( ⊥ ‘𝑋))) |
| 11 | 2, 3, 7, 10 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘ 1 )𝐶( ⊥ ‘𝑋))) |
| 12 | eqid 2731 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 13 | 12, 5, 8 | opoc1 39311 | . . . . 5 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = (0.‘𝐾)) |
| 14 | 2, 13 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘ 1 ) = (0.‘𝐾)) |
| 15 | 14 | breq1d 5099 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘ 1 )𝐶( ⊥ ‘𝑋) ↔ (0.‘𝐾)𝐶( ⊥ ‘𝑋))) |
| 16 | 4, 8 | opoccl 39303 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 17 | 1, 16 | sylan 580 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 18 | 17 | biantrurd 532 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((0.‘𝐾)𝐶( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
| 19 | 11, 15, 18 | 3bitrd 305 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
| 20 | 1cvrco.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 21 | 4, 12, 9, 20 | isat 39395 | . . 3 ⊢ (𝐾 ∈ HL → (( ⊥ ‘𝑋) ∈ 𝐴 ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
| 22 | 21 | adantr 480 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐴 ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ (0.‘𝐾)𝐶( ⊥ ‘𝑋)))) |
| 23 | 19, 22 | bitr4d 282 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 occoc 17169 0.cp0 18327 1.cp1 18328 OPcops 39281 ⋖ ccvr 39371 Atomscatm 39372 HLchlt 39459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-p0 18329 df-p1 18330 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-hlat 39460 |
| This theorem is referenced by: 1cvratex 39582 lhpoc 40123 |
| Copyright terms: Public domain | W3C validator |